Chapter 7: London Underground

London Underground 7

Scenario
The objective of this project is to advise passengers on the best route to take between a starting point and
destination on the London Underground.

The first London Underground line opened in 1863. Further lines have been progressively added up to the
present day, resulting in a large and complex interconnected network. A diagrammatic map has been
designed to help travellers navigate the system, with different underground lines identified by colour

Chestent e
(@t smcions)
Enti Tow Theydon sels
Thaabalds Grove 8
fumsgrins sl Grscen
o " Tty St
Hgnamme Conbrosters ” Longhten
OQushers utwecd St @
Totterage & Whatsore & oy @i o &
| Sttt
Cmanton Green sedng G S —
s restms

@) Corpanaorspart) woodsice park

& est Anchey Amas Goure
Siversiect @ tappamarin Horlg oo

Hutch End

| Heasstena ane
[
A Wood strese oo wecorces frovion

gee 2
archusy /
Na—

(Tr—

Hotoway Rosa,

Sussury Town)

nnnnn

.
/ shornsean
e

4 ﬁ\m..-.

T
A 3
=
- Lotimur Roed
S
E

"~
arataas GV (Turtwm S Rovous
Norfaids o
toon Moror
ks Gureerury
[T

(TR

Bt oy) il
st

wimblecen Fak 4

vimlesn. % Ui 1

Eaper

P o o,

Due to the large number of interconnections, it is often possible to travel between two locations by a
variety of routes. It may be necessary to change train and use a different underground line at one or more
points during the journey. In this project, the search strategy will select routes which minimise the number
of changes needed. It can be difficult to change platforms if stairs or escalators have to be negotiated,

especially at busy times or when carrying luggage.

Once the minimum number of changes of train is found, there may still be several routes available. The
program will attempt to find the quickest route. To simplify the problem, it is assumed that the journey
times between each pair of stations is approximately equal. This is a reasonable assumption, at least for
the central area of London where stations are closely spaced. If several routes are possible, the objective is
to select the route passing through the minimum number of intermediate stations.

The recommended route will be presented to the user, but there should also be an option to see
alternative routes. The user may have personal knowledge of the underground system and know how easy
or difficult it is to change trains at a particular station, so may prefer one of the alternative routes.

357

Web-based programming projects

In addition to the public function, the web site should allow staff to update the system in the event of new
underground lines or stations opening, or existing stations closing.

Design

The requirements of the system are summarised in the use case diagram below.

London Underground route planner

enter start and
destination

setup
underground line

Extension Points
select on map
select from list

r'd
<<include>>

’
’

add station

plan route
kd
<<include>> Staff

calculate
route with least
changes, then least
intermediate
stations

~
<<include>>
~

Public \

specify map
position

A
<<include>>

link
stations along
underground
line

display
recommended
route
Extension Points
display alternative
routes

-
<<include>>

specify
underground line

Staff will use an on-screen display of the official underground map as a guide for adding stations and
underground lines to the screen. The program can then construct a graphical display at run-time which
resembles the published map as closely as possible.

The user may select the start and destination by clicking on stations on the computer generated map, or
may select from an alphabetical list of stations.

Attributes for underground lines and stations will be stored in database tables, and will be accessed by the
map plotting and route planning algorithms.

Station RoutePoint Line
StationID | RoutePointID LinelD
StationName LinelD }—l_’_ LineName
Xpos }<| StationID Colourcode
Ypos Pointer
Position Backpointer

Position

The Line table will record the names and colour codes for each underground line.

358

Chapter 7: London Underground

The Station table will record the name and map coordinates of the station. The London Underground map,
which is widely recognised to be an early masterpiece of commercial art and design, is simplified so that all
lines run either horizontally, vertically, or at angles of 45°. This in turn requires station name labels to be
displayed in different orientations above, below, to the left or right of the underground lines as in the
examples below:

kWatford High Street N“"h”““d Sudbury Hill
(B
South
Hampstasd Northwick Rickmansworth
Park

Additionally, it is sometimes necessary to print multi-word station names on two lines in order to fit the
available space. Staff will be able to specify these display options when entering a station on the map.
Appropriate values will be entered as StationName and Position attributes.

The RoutePoint table will record the connections between stations along particular underground lines by
means of a series of linked lists. This allows easy calculation of the number of intermediate stations
between the start and destination.

Stockwell eo——»| Vauxhall o—»

v

Brixton

The records in the RoutePoint table will identify a station and an underground line. A pointer field
identifies the next station along the line, whilst a backpointer identifies the previous station. A value of -1
will be used to mark the end of a line.

Line Station Pointer Backpointer Branch
1 | Victoria Brixton 2 -1 A 1
2 | Victoria Stockwell 3 1 1
3 | Victoria Vauxhall 4 2 1
4 | Victoria Pimlico 5 3 1
5 | Victoria Victoria 6 Vv 4 1
13 | Victoria Tottenham Hale 14 12 A 1
14 | Victoria Blackhorse Road 15 13 1
15 | Victoria Walthamstow Central 1w 14 1

The geometry of the network makes it necessary to identify the branch for each section of an underground
line, so that possible routes are fully defined:

e Some underground lines run directly from start to finish, as in the case of the Victoria line shown
below. All stations along the route will be marked as serving branch 1.

e The Circle line is unusual in forming a closed loop. Trains travel around the loop in both clockwise
and anticlockwise directions. All stations will be marked as serving branch 1. A station appears
twice in the linked list, and forms the closure point of the loop.

359

Web-based programming projects

endl end1

startl

startl

Circle line

Victoria line

e Some lines have multiple branches, as in the case of the District Line. Each of the branches will be
separately numbered in the RoutePoint records, with the start and finish stations indicated by null
pointer values.

endl
end3 end1
startl end2
start2 start3
start4
end2

end4

District line start?

startl

Northern line

o The Northern Line splits into two branches which then re-join after crossing central London. The
branches will be separately numbered in the RoutePoint records.

Multiple underground lines may run between pairs of stations, as in the examples below. To avoid lines
being hidden when the map display is drawn, each new line will be offset vertically, horizontally or
diagonally when it is added. The program will specify the direction of offset by means of the Position

attribute.
Great Portland
Bayswater Street Barblcan M

360

Chapter 7: London Underground

Once a series of underground lines have been recorded as linked lists, this data can be used to find routes
between specified stations. The strategy which will be used is illustrated in the diagrams below.

If both the start and destination stations occur on the same O O
underground line, including any branches present, then direct pe o
travel is possible without changing train. The passenger may destination

need to check that a train is travelling to the correct branch O
before boarding. O
O
o
(@) start
O
. . . o O
If direct travel is not possible, then a search is carried out for a ® start
route involving one change of train. Each station along the 1o,
start line is considered as a possible change station. If another ® change
underground line passing through that station also serves the o) O
destination, then a route has been found. @) o
O o destination
O @)
Q
O
O
If no route with a single change is found, then a search is O
carried out for a route involving two changes. Each station @ start
along the start line is considered as a possible station for O ©
change 1. If another underground line passes through that O @ changel e)
station, then each point along this second line is a possibility g O O o
for change 2. If a third line passing through the change 2 o) o o) change 2
station also serves the destination, then a route has been o ® O

found. ®
Odestination

If no route with two changes is found, then the search could continue in a similar way for a route with
three or more changes. The interconnected nature of the London Underground system ensures that it will
eventually be possible to find a route between any two specified stations.

Programming techniques

The program will be written using PHP code for handling database operations and the search algorithm,
whilst the p5.js high level extension of JavaScript will be used to develop interactive graphics for the map
displays on the public and staff web pages.

The website will use one main page design for staff input of map data, and another public page for route
finding. The pages will be largely controlled by mouse events, with some keyboard input. Data will be
handled in the form of arrays of Line, Station, RoutePoint and Branch objects.

361

Web-based programming projects

Method

Create folders named 'underground' on your local computer and on the internet server to store files for the
project. We will begin by developing the map input system to be used by the staff. This will be password
protected. Obtain an illustration which may be used on the log-in page, such as the London Underground
sign shown below. Save this to the server as the file image.jpg with a size of approximately 450 pixels by

350 pixels.

Open a blank text document. Begin by adding the lines of code shown below. Save the file as
staffLogin.php and copy it to the server.

<?
session_start();
$_SESSION['login']="NO";
?>
<html>
<head>
<title>London Underground route planning</title>
<style>
body{
font-family: arial, sans-serif;
}
</style>
</head>
<body>
<form action="staffDisplayMap.php" method="post">

<table cellpadding=20>
<tr>
<td><h3>Staff Log-in</h3>
<table border="0" cellpadding="10">
<tr>
<td>User name</td>
<td>
<?
echo "<input type=text size=20 name=user >";
?>
</td>
</tr>
<tr>
<td>Password</td>
<td>
<?
echo "<input type=password size=20 name=pass >";
?>
</td>
</tr>
<tr>
<td></td>
<td>
<input type=submit value="Enter">
</td>
</tr>
</table>
</td>
</tr>
</table>
</form>
</body>
</html>

362

Chapter 7: London Underground

Run the staffLogin page in the web browser.

Staff Log-in

Username []
Password []

| Enter |

The page provides input boxes for the staff user name and password, then a button to continue. The page
is arranged as a form, so that the input values user and pass will be transferred as variables to a page
staffDisplayMap.php which will be loaded when the button is pressed.

A session variable 'login' is given a value of 'NO' when the log-in sequence begins. This variable will be
reset to 'YES' when a valid log-in is made. The session variable will authorise access to the staff map page
and allow changes to be made to the database.

The checking of staff user names and passwords will be handled by a Staff object class, linked to a staff
database table. We will begin by setting up the database table.

Log-in to the PHP MyAdmin web site for your database account and display the list of tables in the
database. Select the New option from the list of tables. Name the table as 'staff'.

Set up three fields: stafflD as integer, staffUsername and staffPassword both of type varchar with a length
of 20 characters.

[Browse | 34 Structure L[] SQL -4 Search #¢ Insert | = Export | [& Import | =3 Privileges @
f4 Table structure g2 Relation view

Name Type Collation Attributes Null Default Comments Extra Action
¥ 1 stafflD 2= int(11) No MNone &~ Change @ Drop

[2 staffUsername varchar in1_swedish_ci No None & Change @ Drop
[3 staffPassword wvarchar(20) latin1_swedizh_ Mo MNone & Change & Drop
= Check all With selected: [Z] Browse g7 Change @ Drop (/2 Primary) [@ Unique = Index [J

Click the checkbox alongside the stafflD field, then click the Primary icon to set this as the primary key field
of the table. Click the Change option on the staffID line, then tick the auto increment (A_I) box:

24 Structure ‘ LF saL | -4 Search | £ [nsert| El Export | & Import | a5 Privileges | & Operatlons
Structure @
Name Type @ LengthValues @) Default @) Collation Attributes

[E Browse

| staffID | [T | [| | None i |

Web-based programming projects

+ Options
— [— = stafflD staffUsername staffPassword
[] g7 Edit % Copy @ Delete 1 Jonasi abc
& Edit Fc Copy @ Delete 2 Brown1 XYZ

+ [Check all With selecfed: (7 Edit Fc Copy @ Delete & Export

We will now set up the web page that the member of staff will access after logging-in. Open a blank file
and add the program code shown below. Save the file as staffDisplayMap.php and copy it to the server.

<?
session_start();
$user=$_REQUEST['user'];
$pass=$_REQUEST['pass'];
$login=$_SESSION['login’'];
if (! ($_SESSION['login']=="YES'))
{

include('Staff.php');

if (Staff::checkPassword($user,$pass)==false)

header('Location: stafflLogin.php');
else
$_SESSION['login']="YES';
}
?>
<html>
<head>
<title>London Underground route planning</title>

</head>
<body>
</body>
</html>

Before the page runs, the PHP $_REQUEST lines will obtain the values entered in the text boxes on the log-
in page. This user name and password will then be verified. The remainder of the page is simply a blank
page template.

The next stage is to access the staff database table to verify the data entered. Begin by setting up a
user.inc file to authorise access to the on-line database. This has the format:

<?
$username="YOUR USER NAME";
$password="YOUR PASSWORD";
$database="YOUR DATABASE NAME";
?>

Create a blank text file and copy the lines above. Replace "YOUR USER NAME" and "YOUR PASSWORD" with
the username and password which give you access to the PHP MyAdmin website. The entry for "YOUR
DATABASE NAME" is normally the same as the username entered on the first line. Save this small file as
user.inc and copy it to the server.

An object oriented approach will be used when working with the database. A Staff class will provide a link
between the staff database table and the web pages, allowing log-in details to be verified. We will create
this class file now.

Open a blank text file and add the lines of program code shown below.

364

Chapter 7: London Underground

<?
class Staff
{
private $user;
private $pass;
function __construct($userSet,$passSet)
{
$userSet;
$passSet;

$this->user
$this->pass

}

private function checkUser($userWanted,$passiWanted)

if (($userWanted==$this->user)&&($passWanted==$this->pass))
return true;

else
return false;

}

public static function checkPassword($userWanted,$passiWanted)
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM staff";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
$i=1;
while ($i <= $num)
{
$row=mysqli_fetch_assoc($result);

$user=$row["staffUsername"];

$pass=$row["staffPassword"];

$staff[$i] = new Staff($user,$pass);

$i++;
}
$found=Ffalse;
for ($i=1;%$i<=%$num;$i++)
{

$answer= $staff[$i]->checkUser($userWanted, $passianted);

if ($answer==true)

$found=true;

}

return $found;

Save the file as Staff.php and copy it to the server.

Run the staff log-in page and test the log-in function. If a correct user name and password are entered, the
blank staffDisplayMap page should open. If incorrect details are entered, the user should be returned
directly to the log-in page.

After entering the website, a series of menu options will be available to staff members. These will allow
the interactive map of the London Underground system to be constructed on screen.

It will be convenient to create the staff menu and store the program code in a separate file. Open a blank
file and add the lines of program code shown below. Save the file as staffMenu.php and copy it to the
server.

365

Web-based programming projects

<table class=menu>
<tr>

<th class=menu>

STAFF OPTIONS</th>

<th class=menu>

Add Underground line</th>

<th class=menu>

Add station</th>

<th class=menu>

Edit station</th>

<th class=menu>

Add link to route</th>

<th class=menu>

View user map</th>

<th class=menu>

Log out</th>

</tr>
</table>

The menu will be displayed as a bar across the top of the web page.

STAFF OPTIONS Add Underground line Add station

Edit station Add link to route View user map

Before running the page, however, a style sheet will be required to provide formatting for the menu
components. Open a blank file and add the lines of CSS code shown below. Save the file as styleSheet.css
and copy it to the server.

body,h3,h2 {
background-color: #FOFOFQ;
font-family: Arial, Helvetica, sans-serif;
color: black;
font-size: small;
}
h2 {
font-size: 16px;
}

table.menu {
border-collapse: collapse;
width: 100%;

}
th.menu {
text-align: left;
padding: 8px;
background-color: rgb(e, 153, 216);
color: white;
}

a:link, a:visited {
color: white;
text-decoration: none;

366

Chapter 7: London Underground

Return to the staffDisplayMap.php file and add lines of code to link-in the style sheet and menu files.

<html>
<head>
<title>London Underground route planning</title>

(: <link rel="Stylesheet" type="text/css" href="styleSheet.css" />]

</head>
<body>

<?
include('staffMenu.php');
?>

</body>
</html>

Save the staffDisplayMap.php file and copy it to the server. Log-in as a member of staff and check that the

menu options are displayed across the top of the page. The page area below has been given a pale grey
background.

STAEF OPTIONS Add Underground line Add station Edit station Add link to route View user map

The 'Log out' menu option closes the session and returns the user to the log-in page. Check that this works
correctly, and that the user name and password must be re-entered to return to the staffDisplayMap page.

Obtain a digital version of the official London Underground map. The map used in this example project has
a size of approximately 2500 pixels by 1900 pixels. You may choose a map which displays only the main
Underground lines serving central London, or select a more comprehensive map including the Docklands
Light Railway, London Overground and London Trams network. Save the map file as tubemap.jpg and copy
it to the server.

STAFF OPTIONS Add Underground line Add station Edit station Add link to route
Oueerisark_tbur E e - o
Higthoad Hampstead St John's Wood King's Cross

St Pancras,
urn Park

=P Road Mary Great Portland Euston 0-.—.5/
43 Baker
Maida Vale ¥ Q 0\\"“‘ Etest - ;

Warwick ~—_—‘Q__ P e e e _
b Edgware t Warren Street
Road

Avenue
4 Royal Oak

Euston Old Street =

Square

" Westbourne Park

| | Goodge

- Ladbroke Grove - Bayswater ['Street o —
Bond

‘ Street Oc]xford

- Latimer Road = Lo

Liverpool
Street ==

t

Marble Arch,

Tottenham Holborn
Court Road

Shepherd's Notting
Bush == | Hill Gate

Aldga
Covent Garden

L
3 J T

Holland Queenswa; Gate St Paul's
Y. Green Park Leicester Square

Hyde Park Corner,

Piccadilly 2=Cannon Street
Shepherd's Circus | JMonument Tower
Bush Market * ” [High Street Kensington Pl = ‘ - <= Hill
[Olympla) ansion House © Fanwrcn Streer
Idhawk Road - Knightsbridge,] JL|
c Barons Gloucester < = Blackfriars 7 River Thames
lammersmith~? Court Road Gam= R StJames's . aam
) 3 2 Victoria f3) Park Temple 4)
), P— | H 2 4
T d Y \J /
Ravenscourt West Earl's 50\\',11. Sloane Wcslmlnstce: \ Embankment &= // /«/ Y. London Bermon
Park Kensington Court Kensington ~ Square = 5 y L"‘g
(- e
Waterloo) -
-
== West Brompton 9
D Southwark
(N
N\ X Pimlico »
\ Fulham Broadway L Lambeth North
\\ Parsons Green = Imperial Wharf <
\\\\ Putney Bridge o /
& |

367

Web-based programming projects

The default screen display on entering the staff page will be this reference map. The map may also be
accessed at other times by clicking the STAFF OPTIONS caption at the left of the menu bar.

The map will be displayed in a scrolling window which we will create using the p5.js high level extension of

JavaScript. To allow p5.js to be used on the page, obtain the files

p5.js and p5.dom.js

from the developers' web site at: p5js.org

Copy the files p5.js and p5.dom.js to the 'underground' folder on server.

Return to the staffDisplayMap.php file and add lines of code to access the p5.js and p5.dom.js files.

<html>
<head>
<title>London Underground route planning</title>

<link rel="Stylesheet" type="text/css" href="styleSheet.css" />

(

<script src="p5.js"></script>

<script src="p5.dom.js"></script>

</head>
<body>

We will now add program code to display a section of the map. Continuing to work on the

staffDisplayMap.php file, add the <script> block shown below.

?>
/,;br>

<body>

<?

include('staffMenu.php');

<script type="text/javascript">
var VscrollPosition=300;
var HscrollPosition=400;
var Hscroll=false;
var Vscroll=false;

function preload()

{

}

imgl=loadImage("tubemap.jpg");

function setup()

{
}

createCanvas (1000, 654);

function draw()

{

}

transV = map(VscrollPosition, 0,
transH = map(HscrollPosition, 0,
push();

translate(-transH, -transV);
image(imgl, 0, 0);

pop();

\\7</script>

(height-14), @, 1890-height);
(width-14), @, 2560-width);

</body>
</html>

368

Chapter 7: London Underground

Save the staffDisplayMap.php file and copy it to the server. Log-in to the web site as a member of staff. A
section of the map should be visible in a screen window, although scroll bars are not yet present. We will
add the scroll bars next.

Several functions will be needed to operate the scrolling. It will be convenient to store these in a separate
file which can be accessed by the main program.

Open a blank file and add the lines of program code shown below. The two functions create the grey scroll
bars below and to the right of the map window, and add markers to indicate the scroll position.

<script>

function Vscrollbar(VscrollPosition)
{

noStroke();

fill(204);

rect(986,0,14,640);

£il11(255);

rect(986,640,14,14);

fill(1e2);

rect(986,VscrollPosition,14,14);

}

function Hscrollbar(HscrollPosition)
{

noStroke();

fill(204);

rect(0,640,986,14);

£i11(255);

rect(986,640,14,14);

fill(102);

rect(HscrollPosition,640,14,14);

}

</script>

Save the file as mapFunctions.php.

Return to the staffDisplayMap.php file and add a line of code to link to the mapFunctions file.

<body>
<?
include('staffMenu.php');
(: include('mapFunctions.php'); :)
?>

<script type="text/javascript">

One further function will be required to operate the scrolling. This resets the vertical or horizontal scroll
position if the mouse pointer is moved along either of the scroll bars. Add the scrollMove() function
shown below to the mapFunctions.php file, save the file and copy it to the server.

369

Web-based programming projects

function scrollMove()

{
if (((x>=960)8&&(x<1020)8&&(y<626))||(Vscroll==true))
{

if (mouselsPressed==true)

if ((x>=960)8&(x<1020)8&(y<626))
Vscroll=true;

VscrollPosition=y;

if (VscrollPosition<®)
VscrollPosition=0;

if (VscrollPosition>640)
VscrollPosition=640;

}

}
if (((y>=640)8&(x<976))||(Hscroll==true))
{

if (mouseIsPressed==true)

if((y>=640)8&(x<976))
Hscroll=true;

HscrollPosition=x;

if (HscrollPosition<®)
HscrollPosition=0;

if (HscrollPosition>986)
HscrollPosition=986;

}

}

if (mouseIsPressed==false)

{
Hscroll=false;
Vscroll=false;

\ Y,

</script>

The final step is to return to the staffDisplayMap.php file and add lines of program code to operate the
map scrolling. These will create the scroll bars, determine the position of the mouse, then alter the scroll
position if a scroll bar is selected. This in turn changes the amount by which the map image will be offset
horizontally or vertically when it is displayed in the screen window.

transV

transH

370

Chapter 7: London Underground

Add lines of code to the draw() function as shown below. Save the staffDisplayMap.php file and copy it to
the server.

function draw()

¢ transV = map(VscrollPosition, @, (height-14), 0, 1890-height);
transH = map(HscrollPosition, @, (width-14), @, 2560-width);
push();
translate(-transH, -transV);
image(imgl, 0, 0);
pop();

Hscrollbar(HscrollPosition);
Vscrollbar(VscrollPosition);
X=mousex;

y=mouseY;

scrollMove();

}
</script>
</body>
</html>

Run the website, logging-in as a member of staff. Check that the map can now be scrolled horizontally or
vertically by dragging the mouse on the scroll bars.

This completes the reference map display. We can now work on the other staff options.

Options will be selected from the menu bar. The page will then be re-loaded with a value set for the
variable 'option'. The program should begin by obtaining the value of this variable.

Return to the staffDisplayMap.php file and add a line of program code to the PHP block at the start of the
page.

if (Staff::checkPassword($user,$pass)==false)
header('Location: staffLogin.php');

else
$_SESSION['login']="'YES';
}
(ﬁ$optionSelected = $_REQUEST['option'];]
?>
<html>
<head>

We will then convert the PHP variable 'option' into an equivalent JavaScript variable by means of JSON
encoding. Add a line of code near the start of the <script> block to do this.

<script type="text/javascript">
var VscrollPosition=300;
var HscrollPosition=400;
var Hscroll=false;
var Vscroll=false;

(var optionSelected= <? echo json_encode($optionSelected); ?>;)
function preload()
{
imgl=1loadImage("tubemap.jpg");
}

371

Web-based programming projects

Save the staffDisplayMap.php file.

When the option to add a station is selected, the user will click on the map to indicate the position of the
station, and type the name of the station into a text input box. We will add a function to handle these
operations.

Return to the mapFunctions.php file and add the stationlnput() function shown below to place textbox
components to the right of the map display.

Old Street =&

Station name
Liverpool
Street =
4 N
function stationInput()
{

inputX = createlInput();
inputX.position(1060, 1790);
inputX.size(50);

captionX = createkElement('h3', 'X');
captionX.position(1030, 160);

inputY = createlInput();
inputY.position(1060, 200);
inputY.size(50);

captionY = createkElement('h3', 'Y');
captionY.position(1030, 1990);
captionS = createkElement('h3', 'Station name');
captionS.position(1030, 220);

inputS = createlInput();
inputS.position(1030, 260);
inputS.size(2590);

inputS2 = createInput();
inputS2.position(1030, 280);
inputS2.size(250);

__} J
</script>

Save the mapFunctions.php file and copy it to the server.

Return to staffDisplayMap.php and add program code to call the stationlnput() method.

function setup()
{
createCanvas(1000, 654);
if (optionSelected=='station')
{
stationInput();
}
}
function draw()
{

372

Chapter 7: London Underground

Save the staffDisplayMap.php file and copy it to the server. Run the website, logging-in as a member of
staff. Select 'Add station' from the menu and check that text boxes and labels are displayed to the right of
the map.

Return to the staffDisplayMap.php file. We will now arrange for a marker to be displayed on the map
when the user clicks the mouse to indicate the position of a station. Two variables newX and newY will be
required. Add these near the beginning of the <script> block, as shown below.

var HscrollPosition=400;
var Hscroll=false;
var Vscroll=false;

var newxX=e0;
var newY=0;

var optionSelected= <? echo json_encode($optionSelected); ?>;

function preload()

{

Go now to the draw() function and add the lines of program code shown below.

image(imgl, 9, 0);
pop();

-

if (optionSelected=="'station')

{

if (mouseIsPressed==true)
if((x<940)&&(y<580))
{

xpos=int(x)+int(transH);
ypos=int(y)+int(transV);
inputX.value(xpos);
inputY.value(ypos);

newxX=x;
newY=y;
}
if ((newX+newY)>0)
{
£i11(255,0,0);
stroke(9);

ellipse(newX,newY,14,14);

NG J

Hscrollbar(HscrollPosition);
Vscrollbar(VscrollPosition);
x=mouseX;

y=mouseY;

scrollMove();

}

</script>

Save the staffDisplayMap.php file and copy it to the server. Re-run the staffDisplayMap page, selecting
the 'Add station' option. Move the mouse pointer onto the map and click on a station. A red circle should
appear at the mouse position, and the x, y coordinates will be displayed.

373

Web-based programming projects

Gloucester
Road Ly 2=

Vi:torl;

South Sloane
Court Kensington Square —
X 942 1

Y [1014 |

Station name

Pimlico |South
pway \ {Kensington

The station name can then be typed into the input boxes, either on a single line or on two lines as required
for the map display.

Notice that it may be necessary to display the station name above, below, or to the left or right of the
circular maker, depending on the pattern of the Underground lines in that particular area of the map. We
will allow the user to specify the display position for the station name.

Return to the staffDisplayMap.php file and locate the setup() function. Add lines of code as shown:

function setup()

{
createCanvas(1000, 654);

if (optionSelected=="'station')

{
stationInput();
buttonArray();
caption@® = createklement('h2', '0');
caption@.position(1200, 436);
caption@@ = createElement('h3', 'station’');
caption@2 = createElement('h3', 'station2');
}

These lines of code will use a buttonArray() function to create a set of buttons which will allow the station
caption to be displayed in any of eight positions around the station marker symbol.

== Moorgate

Liverpool
Street 2=

L0 [

| T
Aldga L | [jij button selecting

L OO

T display to the right of

Chancery Lane
Bank

St Paul's
the station marker

FCannon Street

Monument Tower

== Hill Russell

lon House W Fancharch Joant o Square

River Thames

Continuing to work on the staffDisplayMap.php file, go now to the draw() function. Add the lines of
program code below. These obtain the station name input by the user, so that it can be displayed as the
caption alongside the station symbol.

374

Chapter 7: London Underground

if (optionSelected=='station')

{

station = inputS.value();

station2 = inputS2.value();
caption@@.html(station);
caption@2.html(station2);

sWidth = textWidth(station)*1.15;
sWidth2 = textWidth(station2)*1.15;

if (mouselsPressed==true)

1F((x<940)8&(y<580))

Move now to the end of the <script> block and add the buttonArray() function.

4 function buttonArray()
{

buttonPl = createButton(' ');
buttonPl.position(1150, 320);
buttonPl.mousePressed(setPositionl);
buttonP2 = createButton(' ');
buttonP2.position(1180, 320);
buttonP2.mousePressed(setPosition2);
buttonP3 = createButton(' ');
buttonP3.position(1210, 320);
buttonP3.mousePressed(setPosition3);
buttonP4 = createButton(' ');
buttonP4.position(1210, 3590);
buttonP4.mousePressed(setPosition4);
buttonP5 = createButton(' ');
buttonP5.position(1210, 3890);
buttonP5.mousePressed(setPosition5);
buttonP6 = createButton(' ');
buttonP6.position(1180, 3890);
buttonP6.mousePressed(setPosition6);
buttonP7 = createButton(' ');
buttonP7.position(1150, 389);
buttonP7.mousePressed(setPosition7);
buttonP8 = createButton(' ');
buttonP8.position(1150, 350);
buttonP8.mousePressed(setPosition8);

\ J

</script>

Save the staffDisplayMap.php file and copy it to the server.

A series of small functions will display the station name in the different possible positions, with variations
depending on whether a single or double line of text is required. Return to the mapFunctions.php file and
add the functions setPosition1() .. setPosition8() as shown on the two pages below.

Save the mapFunctions.php file and copy it to the server.

375

Web-based programming projects

function setPositionl()

{
xpos=1194-sWidth; xpos2=1194-sWidth2;
positionNo=1;
if (sWidth2>10) {
caption@@.position(xpos, 406);
caption@2.position(xpos2, 420);
}
else
caption@@.position(xpos, 420);
}
function setPosition2()
{
Xpos=1204- (sWidth/2); xpos2=1204-(sWidth2/2);
positionNo=2;
if (sWidth2>1@) {
captione@@.position(xpos, 406);
caption@2.position(xpos2, 420);
}
else
caption@@.position(xpos, 420);
}
function setPosition3()
{

positionNo=3;

if (sWidth2>10) {
caption@@.position(1220, 406);
caption@2.position(1220, 420);

}

else
caption@@.position(1220, 420);

}

function setPosition4()
{
positionNo=4;
if (swWidth2>10) {
caption@@.position(1220,430);
caption@2.position(1220,444);
}
else
caption@@.position(1220,438);
}

function setPosition5()
{
positionNo=5;
if (sWidth2>10) {
caption®@@.position(1220, 456);
caption@2.position(1220, 479);
}
else
caption@@.position(1220, 456);

376

Chapter 7: London Underground

4 N
function setPosition6()
{
positionNo=6;
Xpos=1208-(sWidth/2); xpos2=1208-(sWidth2/2);
if (sWidth2>10) <
caption@@.position(xpos, 456);
caption@2.position(xpos2, 470);
}
else
caption@@.position(xpos, 456);
}
function setPosition7()
{
positionNo=7;
xpos=1194-sWidth; xpos2=1194-sWidth2;
if (swidth2>10) {
caption@@.position(xpos,456);
caption@2.position(xpos2,470);
}
else
caption@@.position(xpos,456);
}
function setPosition8()
{
positionNo=8;
xpos=1194-sWidth; xpos2=1194-sWidth2;
if (sWidth2>10) {
caption@@.position(xpos,430);
caption@2.position(xpos2,444);
}
else
caption@@.position(xpos,438);
- } ‘/
</script>

Save the mapFunctions.php file and copy it to the server. Refresh the staffDisplayMap page and select the
Add station option. Carry out the sequence to enter a station, selecting the location on the map by clicking
the mouse, then entering the station name on one or two input lines as required.

Check that the station caption can be moved to any of eight positions around the station symbol by clicking

on the array of buttons, as in the examples below.

ovent Garden
St Paul's
fter Square

=2=Cannon Street
Meonument

Mansion House

<= = Blackfriars

Liverpool
Street ==

River

Aldga

Tower
<= Hill

T Fonchurch Street

Thames

Station name

|Russell

\Square

Russell
o Square

377

Web-based programming projects

Aldga ;
Garden Station name

St Paul's [Mansion House

uare

3 \

——
==Cannon Street Monument Tower

Mansion House 2 fancheich Street

River Thames ‘_\

= Blackfriars

Bridge Mansion House

i LI

Ll

L

o)

One further complexity needs to be considered. Major stations which serve multiple underground lines are
often represented on the map by several linked symbols, as in the case of Paddington, Euston and other
stations in these extracts. Only one symbol in each linked group displays the station name.

Park Kilburn South Mornington
High Road Hampstead Crescent
A A

2=Paddington Edgware Road Mar]
B

vick
pue

Edgware

Royal Oak Road Euston

Xx
King's Cross

We will add a button option to hide the station name captions on the additional symbols linked within a
station group. Return to the setup() function in the staffDisplayMap.php file and add the lines of program

code below. Save staffDisplayMap.php and copy it to the server.

if (optionSelected=='station')

{
stationInput();
buttonArray();
caption@® = createkElement('h2', '0');
caption@.position(1200, 436);
caption@@ = createElement('h3','station');
caption@2 = createkElement('h3', 'station2');

buttonH = createButton('hide'); buttonH.position(1030, 380);
buttonH.mousePressed(setPosition®);

}

Go now to mapFunctions.php and add a setPosition0() function as shown. Save the mapFunctions.php

file and copy it to the server.

function setPosition@()

{
positionNo=0;
caption@@.position(-100,-100);
caption@2.position(-100,-100);

}

</script>

378

Chapter 7: London Underground

Refresh the staffDisplayMap web page. Enter a station name and display it in one of the eight positions
around the station marker. Check that the name caption can then be hidden.

King's Cross
St Pancras,

Farringdon
N~

() Old Street =

X [1344 |
vy 72|

Station name

Russell
Square

Barbican
Holborn
nt Garden
St Paul’s

Square

==Cannon Street

Aldga

Monument Tower
< Hill

King's Cross
St Pancras
NN
Liverpool [‘ ‘ ‘
Street == . =
| hide | i

We can now arrange for the station data to be stored in a database table. Go to the PHP MyAdmin website
for your database and list the existing tables. Select the 'New' option and create a table with the name

'stations'. Add fields as shown below.

#
1

h = o Pa

Name Type Collation Attributes MNull
StationlD > int(3) No
StationName varchar(40) utfé_gensral ci fes
Xpos int(20) Yes
Ypos int(13) Yes
Position int(11) No

Default Comments Extra

None AUTO_INCREMENT
NULL
NULL
NULL

Naone

The integer StationID field should be selected as the primary key, and set to auto-increment as records are
added. StationName has the data type varchar, with a size of 40 characters. The remaining fields are of
data type integer.

Data will be transferred between the web page and the database by means of station objects. Open a
blank file and add the program code below to begin the definition of the Stations class.

<?

{

function __construct($stationID, $stationName, $xpos, $ypos,$position)

class Stations

public static $stationObj = array();

public $stationID;

public $stationName;

public $xpos;

public $ypos;

public $position;

{
$this->stationID = $stationID;
$this->stationName = $stationName;
$this->xpos = $xpos;
$this->ypos = $ypos;
$this->position = $position;

}

379

Web-based programming projects

The class begins with a list of attributes which correspond with the fields of the stations database table.
The attributes are set as public, rather than the more usual private status. This is to allow the PHP Station
objects to be easily converted to JavaScript objects by means of JSON encoding, for use in the interactive
map display.

We will now add a method to the Stations class to save records into the database. Insert the addStation()
function shown below. Save the file as Stations.php and copy it to the server.

/'public static function addStation($stationName, $xpos,$ypos,$position))
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query = "INSERT INTO stations VALUES ('','$stationName’, '$xpos’,
"$ypos’, '$position)";
$result=mysqli_query($conn, $query);
mysqli_close($conn);
U J
}
?>

Return to the staffDisplayMap.php file and add another button to the setup() function, as shown.

buttonH = createButton('hide'); buttonH.position(1030, 380);
buttonH.mousePressed(setPosition®);

button = createButton('add station');
button.position(1120, 520);
button.mousePressed(addStation);

}
¥

Insert an addStation() function at the end of the <script> block.

function addStation()
{

const xloc = inputX.value();

const yloc = inputY.value();

result = confirm('Add this station');
if (result==true)

{

inputS.value()+"*"+inputS2.value()+"&position="+positionNo+

window.location = "addStation.php?x="+xloc+"&y="+yloc+ "&stationName="+ Eﬁjl
"&action=add&Hscroll=" +HscrollPosition+"&Vscroll="+VscrollPosition;

}

else

{

}
_ Y,

</script>

newX=0; newY=0;

Save the staffDisplayMap.php file and copy it to the server.

380

Chapter 7: London Underground

A button with the caption 'add station' will be displayed below the station input components. When the
button is clicked, the user will be asked to confirm that they wish to save the station record. If so, another
page addStation.php will be loaded and the new station data transferred to it, ready for saving into the
database.

Open a blank file and add the lines of program code below, then save the file as addStation.php. Copy the
file to the server.

The addStation page will not be visible to the user when the web site runs. The page collects details of the
station which were entered previously, then calls the method in the Stations class to create a new record in
the database table. The user is then returned to the staffDisplayMap page.

<?

$stationName=$_REQUEST['stationName'];

$stationName=str_replace("'"," ",$stationName);

$xpos=$_REQUEST['x'];

$ypos=$_REQUEST['y'];

$position=$%_REQUEST['position’'];

$Hscroll=$ REQUEST['Hscroll'];

$Vscroll=$ REQUEST['Vscroll'];

include ('Stations.php');

Stations::addStation($stationName, $xpos,$ypos,$position);

header('Location: staffDisplayMap.php?option=station&Hscroll=". $Hscroll. E:il

'&Vscroll=".$Vscroll);

?>

We can now test the input of stations. Run the staffDisplayMap web page and carry out the procedure for
entering a station. Select the station location by clicking the mouse on the map, type the station name and
use the button array to select the required display position. Finally, click the 'add station' button. A confirm
dialogue box should appear. Click OK.

Add this station

:

Enter several more stations in a similar way.

Go now to the PHP MyAdmin website and select the stations table. Check carefully that the stations
entered on the web page have been recorded correctly in the database table. Notice that the station name
includes an asterisk (*) symbol to mark the end of the first line of text of the label, followed by a second
line of text if required. For example:

Camden Town* The station name should be displayed as a single line.
Oxford*Circus The station name should be displayed as two separate lines.
StationlD StationName Xpos Ypos Position
1 Tottenham*Court Road 1237 &06 7
2 Oxford*Circus 1131 807 1
3 Camden Town® 1279 544 8
4 Swiss Cottage” 1014 588 3]

The station name display position is indicated by an integer between 1 and 8, counting clockwise at
intervals of 45° from the top-left position. A value of O for position indicates that the name label should be
hidden.

381

Web-based programming projects

With station data stored in the database, the next step is to reload the records and check that station
symbols can be displayed to create an interactive map.

Go to the Stations.php class file and add a loadStations() method as shown below. This will create a set of
PHP Station objects.

4)

public static function loadStations()
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!'$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM stations";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
$i=1;
while ($i <= $num)
{
$row=mysqli_fetch_assoc($result);
$stationID=$row["StationID"];
$stationName=$row["StationName"];
$xpos=$row["Xpos"];
$ypos=$row["Ypos"];
$position=$row["Position"];
$obj = new Stations($stationID,$stationName, $xpos,$ypos,$position);
Stations::$stationObj[$i] = $obj;

$i++;
}
return $num;
! J
}
?>

Save the Stations.php file and copy it to the server.

Return to the staffDisplayMap.php file and add lines of program code to the PHP block near the start.
These will access the Stations class file and create the set of Station objects.

if (Staff::checkPassword($user,$pass)==false)
header('Location: stafflLogin.php');

else
$_SESSION['login']="YES';

}

$optionSelected = $ _REQUEST['option'];
include ('Stations.php');
$stationCount=Stations::loadStations();
?>

<html>

<head>

<title>London Underground route planning</title>

Move down to the <script> block and add lines of code as shown below. These convert the PHP Station
objects to an equivalent set of JavaScript Station objects.

382

Chapter 7: London Underground

var HscrollPosition=400;

var Hscroll=false;

var Vscroll=false;

var newX=0;

var newY=0;

var optionSelected= <? echo json_encode($optionSelected); ?>;

stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

function preload()

{
}

imgl=1loadImage("tubemap.jpg");

Go now to the draw() function and add the line of code shown below. This will call a displayStations()
function which will add symbols to the underground map to indicate the locations of the stations which
have been recorded in the database table.

translate(-transH, -transV);
image(imgl, 0, 0);
pop();
if (optionSelected=="'station')
{
(displayStations();)

station = inputS.value();
station2 = inputS2.value();
caption@@.html(station);
caption@2.html(station2);

Save the staffDisplayMap.php file and copy it to the server.
It just remains to add the function to display the stations.

Return to the mapFunctions.php file and add the displayStations() function at the end of the <script>
block, as shown below. Save mapFunctions.php and copy it to the server.

4 I
function displayStations()
{
for (i=1;i<=stationCount ;i++)
{
xCentre=stationObj[i].xpos;
yCentre=stationObj[i].ypos;
£i11(255,120,0);
stroke(9);
xpos=int(xCentre)-int(transH);
ypos=int(yCentre)-int(transV);
ellipse(xpos,ypos,14,14);

- ! J

</script>

Refresh the staffDisplayMap web page. When the 'Add station' option is selected, all stations recorded in

the database should now be marked by orange circles. Enter records for more stations and check that
these locations are marked on the map.

383

Web-based programming projects

Piccadilly
Circus

== Cannon Street .
Monument

\ == Charing {J oo
* Cross
“%,\ Rivey
James's §<>
Park

London

Bridge
e

A slight problem is that the map moves to a default scroll position when it is reloaded after saving a station
record, rather than staying at the selected scroll position. This can be easily corrected.

Return to the staffDisplayMap.php file and add further lines of code to the PHP block near the start. When

the page is reloaded, these collect the variables representing the horizontal and vertical scroll positions for
the map.

$optionSelected = $_REQUEST['option'];
include ('Stations.php');
$stationCount=Stations: :loadStations();

(

$Hscroll=$ REQUEST['Hscroll'];
$Vscroll=$ REQUEST['Vscroll'];

?>
<html>
<head>

Move down to the <script> block and add the lines of program code shown. The scroll position variables
are first converted from PHP to JavaScript, then used to set the map scroll position.

var optionSelected= <? echo json_encode($optionSelected); ?>;
stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

Hscroll = <? echo json_encode($Hscroll); ?>;
Vscroll = <? echo json_encode($Vscroll); ?>;
function preload()
{

imgl=1loadImage("tubemap.jpg");
}
function setup()

{

if ((Hscroll>@)||(Vscroll>e))
{

VscrollPosition=Vscroll;
HscrollPosition=Hscroll;

}

createCanvas (1000, 654);
if (optionSelected=='station')
{

384

Chapter 7: London Underground

Save the staffDisplayMap.php file and copy it to the server. Refresh the web page and enter another
station record. The map should now remain in the same scroll position when it is reloaded.

The final step in developing the 'Add station' option is to display the station name labels in the selected
positions alongside the station symbols on the map. This will help us to identify any input errors.

Return to mapFunctions.php. Go to the end of the file and create a displayNames() function. Add the
lines of program code shown below.

4 N
function displayNames()
{
for (i=1;i<=stationCount ;i++)
{
xCentre=stationObj[i].xpos;
yCentre=stationObj[i].ypos;
stationName=stationObj[i].stationName;
var res = stationName.split("*");
station=res[0];
if(res[1]>'")
station2=res[1];
else
station2="";
widthSl=textWidth(station);
widthS2=textWidth(station2);
maxWidth=widthS1;
if (widthS2>maxWidth)
maxWidth=widthS2;
xpos=int(xCentre)-int(transH);
ypos=int(yCentre)-int(transV);
pos=stationObj[i].position;
stroke(255);
£i11(255);

\- ; J

</script>

A loop operates for each of the stations. The x and y position of the station is found, so that a caption will
be added for the station.

The station name is split into two lines of text if necessary, using the '*' character as a divider. The pixel
length of each line of text is then found so that the caption can be displayed using left, centre or right
justification as appropriate.

Complete the function by inserting the lines of program code on the page below into the displayNames()
function. The block of code begins by setting up a series of position variables for captions in each of the
eight possible positions around the station symbol. Alignment of the captions depends on whether one or
two lines of text are present. The position variables are then used to draw a white background rectangle of
the required size, and add the text for the station name.

Regent's Park

A
yO
x0 O » — -
y0 px1
Tottenham | —— X2
Court Road

385

Web-based programming projects

ypos=int(yCentre)-int(transV);
pos=stationObj[i].position;

stroke(255);
£i11(255);
//' switch (pos)
{
case '1' : xo=-(maxWidth+10); yo=-24; yl=-24;
px1=-(widthS1+8);
px2=-(widthS2+8); break;
case '2' : xo=-(maxWidth/2); yo=-26; yl=-26;
px1=-(widthsS1/2);
px2=-(widthS2/2); break;
case '3': xo0=8; yo0=-24; yl=-24;
px1=8; px2=8; break;
case '4': xo0=12; yo0=0; yl=-6;
px1=12; px2=12; break;
case '5': x0=10; yo=20; y1=8;
px1=10; px2=10; break;
case '6': xo=-(maxWidth/2); yo=22; y1=8;
px1=-(widthS1/2);
px2=-(widthS2/2); break;
case '7': xo=-(maxWidth+10); yo=20; y1=8;
px1=-(widthS1+8);
px2=-(widthS2+8); break;
case '8': xo=-(maxWidth+14); yo=-2; yl1=-10;
px1=-(widthS1+12);
px2=-(widthS2+12); break;

if (int(pos)>0)

if (widthS2>5)
{
rect(xpos+xo,ypos-12+yo,maxWidth,26);
£il1(9);
text(station, xpos+px1,ypos+yo);
text(station2,xpos+px2,ypos+12+yo);
}

else

{
rect(xpos+xo,ypos+yl,widthS1,16);

fill(e);
text(station, xpos+xo,ypos+12+yl);

}

NG }

}
}

</script>

Save the mapFunctions.php file and copy it to the server.

Return to the staffDisplayMap.php file and add a line of program code to the draw() function.

image(img1, 0, 0);

pop();
if (optionSelected=='station')

{
displayStations();

(displayNames();)

station = inputS.value();

386

Chapter 7: London Underground

Save the staffDisplayMap.php file and copy it to the server. Run the web page and select the 'Add station'

option. The map should be displayed with the station name captions superimposed.

M P

Kilburn Park’ 2
Maida Vale

Warwick _
Avenue 4

s . Edgware
Royal Oak Road
'Westboume Park

@ Ladbroke Grove &) Bayswater

© Latimer Road
Tottenhand ||

East \White Shepherd’s Nottin
Acton City Bush _ Hill Gate, Court Road
P I ancaster
Holland Queensway Gate

0 WAnd | ana Park v yN

Wood Lane | Hyde Park Comer, 4 Dl ‘~—"

% | =) I 1
Shepherd s Czrcu?sxz

} s - ;
Bush Man-;etO Kei Kensingtonyam High Street. Kens.?gton

Paddingtonton ECgware Road Marylebonea\h Bakerg, GrealPortland EusEuston
(% O NStreetet Street = -

Channg
Cross

The positions of our station name captions may not exactly coincide with the original map labels, but check

that no station captions are obscuring the Underground lines.

This completes the 'Add station' option, and we will now turn attention to 'Edit station'. It is important that
the staff are able to make alterations or delete stations, either because an error has been detected on the

map or because changes have been made to the transport network.

When the 'Edit station' option is selected from the menu, the base map will be displayed and the station
markers and name labels will be superimposed. It would be useful to display the station markersina

different colour to the 'Add station' option, to make it easy for the user to distinguish when the 'add' and

'edit' operations are selected.

Return to the mapFunctions.php file. Make changes to the displayStations() function as shown below.

Red, green and blue values have been specified as parameters, and will then be used to set the fill colour

for the station symbols when plotted on the map.

(function displayStations(r,g,b) ~_
{ \l—
for (i=1;i<=stationCount ;i++) REPLACE
{

xCentre=stationObj[i].xpos;
yCentre=stationObj[i].ypos;

stroke(0);
xpos=int(xCentre)-int(transH);
ypos=int(yCentre)-int(transV);
ellipse(xpos,ypos,14,14);

4 show=true;
if (((xCentre-transH)>920)||((yCentre-transV)>600))
show=false;
}
if (show==t)
? (show==true) / REPLACES LINE fill(255,120,0);
_ fill(r,g,b); Y,

387

Web-based programming projects

Save the mapFunctions.php file and copy it to the server.

Return to the staffDisplayMap.php file to add the 'Edit station' option. Go to the draw() function and
make changes to the program as shown below. Two existing lines of program code are replaced:

if (optionSelected=="station’)
{ -—-===::::4 REPLACE

displayStations();

The new block of code will operate for both 'Add station' and 'Edit station’, but the colour of the station
markers will be different in the two cases.

push();
translate(-transH, -transV);

image(imgl, 0, 0);

pop();

if ((optionSelected=='station')||(optionSelected=='editStation'))
{

if (optionSelected=='station')
displayStations(255,120,0);

if (optionSelected=='editStation')
displayStations(0,120,255);

displayNames();
station = inputS.value();
station2 = inputS2.value();

Go now to the setup() function. Change the line of code shown below, so that the block of program lines
will operate for both the 'Add station' and 'Edit station' options.

function setup()

if ((Hscroll»@)||(Vscroll>e))
{

VscrollPosition=Vscroll;
HscrollPosition=Hscroll;

}
createCanvas (1000, 654);

<:if ((optionSelected=="station')||(optionSelected=="editStation')) :)
{
stationInput();
buttonArray();

caption® = createkElement('h2', '0');
caption@.position(1200, 436);

Save staffDisplayMap.php and copy it to the server and run the web page. When the 'Add station' option
is selected, the entered stations should be indicated by orange symbols as before, but the 'Edit station'
option should display the symbols in blue.

The objective of the 'Edit station' option is to allow the user to select a previously entered station by
clicking the mouse on the map. The map coordinates, name and caption position will then be shown, and
can be edited as required. Buttons will be provided to re-save the updated station record, or delete the
station completely from the map.

388

Chapter 7: London Underground

Ul0 SIIEel ==

X 1444
Farringdon Y

Russell

Square Barbican

Station name

=Moorgates Liverpool Cannon Sireet

@gnsion House W Fanihweich Street

ackiriars, e Cannon Street

Chancery Lane Street =
omn HIGHINGE Y Ol G
: Bank Aldga g e
rden g IJ LJ l__l
aul's == =
3 Monument [_[|_[
=Cannon Street, e ;’:‘f‘ﬁr hide l:l |:] D

O
pe= - g?&gzﬂ Bermg
_d T | edit station | | delete station |

We will begin by setting up the pair of buttons for the 'Edit station' option. Return to the setup() function
in staffDisplayMap.php. Locate the block of lines which create the 'add station' button. Add an if...else
structure as shown below, so that different buttons are created when the 'Edit station' option is selected.

caption@2 = createkElement('h3', 'station2');
buttonH = createButton('hide'); buttonH.position(1030, 380);
buttonH.mousePressed(setPosition®);

(if (optionSelected=='station")
{

button = createButton('add station');
button.position(1120, 520);
button.mousePressed(addStation);

4 })
else
{
Ebutton = createButton('edit station');
Ebutton.position(1030, 520);
Ebutton.mousePressed(editStation);
Dbutton = createButton('delete station');
Dbutton.position(1160, 520);
Dbutton.mousePressed(deleteStation);
___J J
}

}

Go now to the end of the staffDisplayMap.php file and add two empty functions.
complete these shortly.

We will return to

4 function editStation()
{

}

function deleteStation()
{

}

.

</script>

389

Web-based programming projects

Save the staffDisplayMap.php file and copy it to the server. Refresh the web page and select the 'Edit
station' option. Check that the edit boxes and buttons are displayed in their correct positions on the right
of the map.

The next step is to transfer data into the edit boxes. Return to the staffDisplayMap.php file and locate the
draw() function. Add lines of program code as shown below, which will run a function selectStationEdit()
when a station is selected on the map. Save the staffDisplayMap.php file and copy it to the server.

displayNames();

station = inputS.value();

station2 = inputS2.value();
caption@@.html(station);
caption@2.html(station2);

sWidth = textWidth(station)*1.15;
sWidth2 = textWidth(station2)*1.15;

if ((optionSelected=="editStation')&&(mouselsPressed==true)&&(x<950))

selectStationEdit();
}

if (mouseIsPressed==true)

{
1 ((x<940)8&(y<580))

Go to the mapFunctions.php file and begin the selectStationEdit() function as shown below.

4)
function selectStationEdit()
{
for (i=1;i<=stationCount ;i++)
{
xCentre=stationObj[i].xpos;
yCentre=stationObj[i].ypos;
Xdiff = abs(xCentre-(x+transH));
Ydiff = abs(yCentre-(y+transV));
if ((Xdiff<20)&&(Ydiff<20))

stationID=stationObj[i].stationID;
stationName=stationObj[i].stationName;
var res = stationName.split("*");
inputS.value(res[0]);

station=res[0];

if(res[1]>"'")

{
inputS2.value(res[1]);
station2=res[1];

}

else

{
inputS2.value('');
station2="";

}

}
¥
\>} J
</script>

390

Chapter 7: London Underground

Insert a further block of code into the selectStationEdit() function as shown below.

else
{
inputS2.value('"');
station2="";

}

f/> caption@@.html(station); ‘\\
caption@2.html(station2);

sWidth = textWidth(station)*1.15;
sWidth2 = textWidth(station2)*1.15;
var labelPos= stationObj[i].position;
stationIDwanted = stationID;
switch(labelPos)

{

case '@': setPosition@(); break;

case '1': setPositionl(); break;
case '2': setPosition2(); break;
case '3': setPosition3(); break;

3
case '4': setPosition4(); break;
case '5': setPosition5(); break;
case '6': setPosition6(); break;
case '7': setPosition7(); break;
case '8': setPosition8(); break;

</script>

Save the mapFunctions.php file and copy it to the server.

When the selectStationEdit() function is called, it checks each of the station objects to determine whether
any one of them lies within 20 pixels of the point where the mouse pointer was clicked. If so, the mouse
pointer coordinates are transferred to the X and Y edit boxes. The station name is split into two lines of
text if necessary, then written to the edit boxes. Finally, the station name is displayed as a caption in the
correct position relative to the station symbol.

Run the web page, selecting the 'Edit station' option. Check that stations can be selected by clicking the
mouse on the map, and the station details entered previously are displayed. It should be possible to edit
the station x, y map location by dragging the red circle. The station name can be edited in the text boxes,
and the label position changed by means of the array of buttons.

Old Street ==

o x
f;arri.ngd.on‘ v

ussell

3quare Barbican

Station name

=Moorgatee | Moorgate ‘

Chancery Lane
o Ciranivury suris

¢ LivLiverpool
Street

We can now complete the database operations for updating and deleting station records. Go to the end of
the staffDisplayMap.php file where the empty editStation() function has been inserted. Add the lines of
program code shown below, which display a confirm dialogue box. If the user clicks 'OK', the program loads
the addStation.php page, with information about the editing required included as parameters in the URL
page address.

391

Web-based programming projects

function editStation()
{
(,Vconst xloc = inputX.value();)
const yloc = inputY.value();
result = confirm('Edit this station');
if (result==true)
{
window.location = "addStation.php?x="+xloc+"&y="+ yloc+
"&stationName="+inputS.value()+"*"+inputS2.value()+"&position="+
positionNo+"&action=edit&stationID="+stationIDwanted+
"&Hscroll="+HscrollPosition+"&Vscroll="+VscrollPosition;
}
else
{
newxX=0;
newY=0;
\ J
}

Go now to the empty deleteStation() function immediately below. Add the lines of program code shown
below. A confirm dialogue box is again displayed, then the program loads the addStation.php page. Details
of the station to be deleted are attached to the URL address as parameters.

Save the staffDisplayMap.php file and copy it to the server.

function deleteStation()
{
4 const xloc = inputX.value();)
const yloc = inputY.value();
result = confirm('Delete this station');
if (result==true)
{
window.location = "addStation.php?x="+xloc+"&y="+ yloc+
"&stationName="+inputS.value()+"*"+inputS2.value()+"&position="+
positionNo+"&action=delete&stationID="+stationIDwanted+
"&Hscroll="+HscrollPosition+"&Vscroll="+VscrollPosition;
}
else
{
newx=0;
newY=0;
}
- J
}

Return to the addStation.php file. Replace the Stations::addStation() command with the lines of program
code below. These obtain a variable Saction which determines whether a station is to be added, edited or
deleted. The appropriate method in the Stations class file is then run.

392

Chapter 7: London Underground

$xpos=$_REQUEST['x'];
$ypos=$_REQUEST['y'];
$position=$_REQUEST['position’'];
$Hscroll=$ REQUEST['Hscroll'];
$Vscroll=$ REQUEST['Vscroll'];
include ('Stations.php');

4 $action=$_REQUEST['action'];)
$stationID=$_ REQUEST['stationID'];
if ($action=="add")
{
Stations::addStation($stationName, $xpos,$ypos,$position);
}
if ($action=="edit"')
{
Stations::editStation($stationID,$stationName, $xpos, $ypos,$position);
}
if ($action=="delete')
{
Stations::deleteStation($stationID);

\J J
header('Location: staffDisplayMap.php?option=station&Hscroll=".
$Hscroll. '&/scroll=".$Vscroll);

?>

Save the addStation.php file and copy it to the server.

Return to the Stations.php class file. A method has already been written to add a station. Insert the two
methods below which will allow station records to be updated or deleted in the database.

-

public static function editStation($stationID,$stationName,$xpos,$ypos,$position)

{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query = "UPDATE stations SET StationName='$stationName',Xpos='$xpos’, E:il

Ypos="$ypos',Position="$position’ WHERE StationID ='$stationID'";

$result=mysqli_query($conn, $query);
mysqli_close($conn);

}

public static function deleteStation($stationID)

{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query = "DELETE FROM stations WHERE StationID ='$stationID'";
$result=mysqli_query($conn, $query);
mysqli_close($conn);

. ; J
}
?>

Save Stations.php and copy it to the server. Run the web page and select the 'Edit station' option. Check
that the name text and label position can be changed for a station, and that the station can then be deleted
successfully.

393

Web-based programming projects

SouuTw
Crossharb
Surrey Oua)SS’ Mudch
/ N\ ‘ Island Gard
: \ _
/ \
:/ \
New '
Cross Gate
| == New Cross
Brockley
Honor Oak Park @

Station name
[EDIT
[TEST

| hide |

At this stage we can begin to set up the 'View user map' option. This will allow staff to preview the map

which will be displayed to users of the website.

Return to the staffDisplayMap.php file and locate the draw() function. Replace the image() command
and add program code as shown below. When the 'View user map' option is selected, the London
Underground map image will not be displayed, but instead a white background will be set for the scroll
window. The stations entered will then be plotted as grey circle symbols, along with their name captions.

Surrey Quays »

A
r :
s
e
.-"':.

A

function draw()

{

transV
transH
push();

translate(-transH, -transV);

map(VscrollPosition, @, (height-14), 0, 1890-height);
map(HscrollPosition, @, (width-14), @, 2560-width);

-
{

}

else

{

background(255);

_ }

image(imgl, 0, 0);

if (optionSelected=="map"')

pop();

{
displayNames();

}

if (optionSelected=="map')

displayStations(225,225,225);

if (optionSelected=='station')
displayStations(255,120,0);

if ((optionSelected=="'station')||(optionSelected=="editStation'))

Save the staffDisplayMap.php file and copy it to the server. Run the web page and select the 'View user
map' option. Check that the stations which you entered earlier are displayed, and that the map can be

scrolled correctly, as in the image below.

394

Chapter 7: London Underground

We will return to complete the 'View user map' option when the routes of underground lines have been

entered.
STAFF OFPTIONS Add Underground line Add station Edit station Add link to route
Q O B
O Stratford Becontres
Home ton O
Upney
O Stratford .
High Sireet Barking
Pudding East Ham
mill Lane (O Abbey
i Upton Park
O O1d Strast Bethnal Green pile End Bow O pton Parl
o ol ORM“ Plaistow
- West Ham
Stepney Green O Eg;?_"gﬁ‘;
Bow
o Aldgéau‘et O Church
a5’ .
) étWEFI%UCll Whitechapel Devons Road O o Star Lane
ree Langdon Park ()
4 Aldgate (O] L
All Baints (O
) Cannin Raoyal
OO Monument Limehouse Foplar Tam'® victora
O o o o O O
Tower Shadwell Westierry Blackwall East Custom House for ExCel
vl O India
;) Prince Regent
-g]a‘ 1’:\{.'ay wes'é”uda]f, O)
West Silverton Royal Albert
Canary Wharf Becklon Park
OL d B d @ gmh ich
ondon ermondsey Canada reamyic
Bridge Water Heron Quays O Po%g%: Cyprus
South Quay () London
City Airport
Crossharbour ()
Surrey Quays () Mudchute () King George
||

We can now move on to enter the underground lines. The first step is to set up a database table to store
the names of underground lines and their colour codes for display on the map. On the official map, some
lines are shown in solid colour whilst others are shown by outlines:

s Bakerloo
s Central
Circle

London Overground

London Trams
DLR

An additional parameter 'solid' will be included, which can be set to true or false.

Open the PHP MyAdmin web site for your database and list the existing tables. Select the 'New' option and
create a table with the name 'line'. Insert fields as shown below. Select linelD to be the primary key field
with data type integer, and set this to auto-increment as records are added. The lineName field is of type
varchar with a size of 40 characters. The colourCode field is also set to varchar with a size of 12 characters.

The solid field is of data type boolean.

MName Type Collation

1 linelD 2> int(11)

2 lineName varchar(40) latin1_swedish_ci
3 colourCode varchar{12) latin1_swedish_ci
4 solid tinyint(1)

Attributes Mull

Mo
Mo
Mo
Mo

Default Comments Extra

None AUTO_INCREMENT
None

Nons

1

395

Web-based programming projects

The next step is to set up a Line class to handle the transfer of database records. Open a blank file and add
the lines of program code below. These begin by defining the attributes for a Line object, which
correspond with the fields of the database table. The attributes have been made public to allow easy
conversion from PHP to an equivalent set of JavaScript objects. A constructor method is then added, along
with a method to save Line records into the database.

<?
class Line
{
public static $lineObj = array();
public $1linelD;
public $lineName;
public $colourCode;
public $solid;
function __construct($lineID,$lineName,$colourCode,$solid)
{
$this->1ineID = $1inelID;
$this->1lineName = $lineName;
$this->colourCode = $colourCode;
$this->solid = $solid;
}
public static function addLine($lineName,$colourCode,$solid)
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query = "INSERT INTO line VALUES
("',"$lineName’, '$colourCode’, '$solid')";
$result=mysqli_query($conn, $query);
mysqli_close($conn);
}
}
?>

Save the file as Line.php and copy it to the server.

The input of underground lines and routes will take place on a new web page. Open a blank file and add
the lines of program code shown in the two boxes below. Save the file as addLines.php.

<?
$optionSelected = $ REQUEST['option'];
include ('mapFunctions.php');
?>
<html>
<head>
<title>London Underground route planning</title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
<script src="p5.js"></script>
<script src="p5.dom.js"></script>
</head>
<body>
<?
include('staffMenu.php');
?>

<script type="text/javascript">

396

Chapter 7: London Underground

var VscrollPosition=300;

var HscrollPosition=400;

var Hscroll=false;

var Vscroll=false;

function preload()

{
imgl=1loadImage("tubemap.jpg");

}

function setup()

{
optionSelected= <? echo json_encode($optionSelected); ?>;
createCanvas (1000, 654);
captionL = createkElement('h3', 'Line name');
captionL.position(1050, 89);
inputL = createlInput();
inputL.position(1050, 116);
inputL.size(2590);
captionC = createElement('h3', 'Colour code');
captionC.position(1050, 140);
colourL = createColorPicker('#aa88aa');
colourL.position(1160, 150);
checkS = createCheckbox('solid', true);
checkS.position(1240, 150);
button = createButton('add line');
button.position(1080, 200);

}
</script>
</body>
</html>

The page creates a scrolling window to display the underground map image in a similar way to the page
where stations were entered. Input boxes are then added to allow details of underground lines to be
entered.

Insert a draw() function underneath the setup() function, as shown below. This handles scrolling of the
map. Save the addLines.php file and copy it to the server.

~

function draw()

{

transV = map(VscrollPosition, @, (height-14), 0, 1890-height);
transH = map(HscrollPosition, @, (width-14), o, 2560-width);
push();

translate(-transH, -transV);

image(imgl, 0, 0);

pop();

Hscrollbar(HscrollPosition);

Vscrollbar(VscrollPosition);

X=mousex;

y=mouseY;

scrollMove();

\ J
</script>

</body>
</html>

397

Web-based programming projects

Run the web site, selecting the 'Add Underground line' option. The familiar scrolling map should be
displayed, along with input controls including a text box for entering the Underground line name. A key to
colour codes should be found in a corner of the map image.

Boston Manor
Gunnersbury
Osterley 2= West Brompton Line name
Hounslow East
Hounslow Central /_/_ e Gard
w Gardens v
@ e
Hounslow West g Futhaim Braadway (& Clolzcods sokd
Heathrow Hatton Cross Richmond == Parsons Green « Imperial Wharf -
Terminals 2&3 Putney Bridge
4 l East Putney o
Southflelds ()
Heathrow
Heathrow Terminal 4 Wimbledon Park =
Terminal 5 P Clacha
pham
/ 2= Wimbledon @ Junction=
s Bakerloo mmmmm Victoria o Interchange stations
s Central === Waterloo & City) step-free access from street to traln
Circle o (@) Step-free access from street to platform
District == Emirates Air Line
mm Distri
cablecar) == National Rail
s Hammersmith & City (Speclal fares apply
y London Overground 4 Alrport
=== Jubilee THL Rall
" . < Riverboat services
= Metropolitan London Trams /

A colour selection button is present to the right of the caption 'Colour code'. Click this button and
investigate how colours may be selected from a pop-up window.

T T %030 %) Kingsbury
Northwick
Park Line name
South Kenton
Wembley Park I
North Wembley
2= Wembley Central Colour code solid
%, Willesden Gre«
Stonebridge Park
N, Kilburn -
Harlesden ' add line
K;[\sal Brondesbury
Willesden Junction aee Park
—& : . o
Brondesbury 0
Kensal Green
Queen’s Park Kilburn South
K High Road Hampstead
x 0
@ =ommun =
Kilburn Park 2=Paddington Edgware Road Marylebc
7\
Maida Vale .

Warwick ‘Q — Y - 170 136 170
Avenue// H
Edgware R G B ¢

¢ Royal Oak Road

The user will enter underground line records by typing the line name, selecting the display colour for the
line, and using the tick box to specify whether solid or outline colouring is to be used. We will now
produce a method to save the record when the 'add line' button is clicked.

Go to the end of the the addLines.php file and insert the saveline() method shown below.

398

Chapter 7: London Underground

function saveline() A
{
result = confirm('Add this line');
if (result==true)
{
noStroke();
fill(colourL.color());
rect(0, 0, 20, 20);
loadPixels();
var index = (10 + (10 * width)) * 4;
var r = pixels[index];
var g = pixels[index+1];
var b = pixels[index+2];
localStorage.setItem('red', r);
localStorage.setItem('green', g);
localStorage.setItem('blue’, b);
window.location = "updateRoute.php?lineName="+inputL.value()+
"&red="+r+"&green="+g+"&lue="+b+"&solid="+checkS.checked();

\} J
</script>
</body>

Return to the setup() function of the addLines.php file. Insert a line of program code which will call the

savelLine() function when the button is clicked. Save the file and copy it to the server.

checkS = createCheckbox('solid', true);
checkS.position(1240, 150);

button = createButton('add line');
button.position(1080, 200);

(: button.mousePressed(savelLine);]

Saving of the record will be controlled by another web page which we will create now. This page will not be

visible to the user when the program runs. Open a blank file and add the lines of program code below.

<?
$lineName=$_REQUEST['lineName'];
$red=$ REQUEST['red'];
$green=$_REQUEST['green'];
$blue=$_REQUEST['blue'];
$checkS=$_REQUEST['solid'];
if ($checkS=="true")
$solid = 1;
else
$so0lid=0;
$colourCode=$red.",".$green.",".$blue;
include('Line.php');
Line::addLine($1lineName,$colourCode,$solid);
header('Location: addLines.php?option=1ine');
?>

399

Web-based programming projects

Save the file as updateRoute.php and copy it to the server. Run the website, selecting the 'Add
Underground line' option. Enter records for several lines, specifying the line name, display colour, and
whether colouring is solid or outline.

Go to the PHP MyAdmin website and select the line table. Check that records have been entered correctly.
The colour code will be shown as three integer values in the range 0-255 which specify the red, green and
blue components of the colour code. Solid line display is indicated by a value of 1, with a 0 value for outline

display. linelD lineName colourCode solid
1 Central 227.44.36 1
2 Morthern 36,32,33 1
3 Circle 248,210.8 1
4 Victoria 3,165,212 1

A final task is to create a key for the map which lists the Underground lines and displays their colour codes.
In preparation for this, we will add another definition to the style sheet file.

Open the styleSheet.css file. Go to the end of the current entries and insert the style block shown below.
Save styleSheet.css and copy it to the server.

K

.

div.lineTable {
position: absolute;
top: 300px;
left: 1040px;
width: 280px;
background-color: white;

}

~

J

Return to the Line.php class file and insert a method to load the line records from the database.

public static function loadLines()
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM line ORDER BY lineName";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
$i=1;
while ($i <= $num)
{
$row=mysqli_fetch_assoc($result);
$1lineID=$row["1ineID"];
$lineName=$row["lineName"];
$colourCode=$row["colourCode"];
$solid=$row["solid"];
$obj = new Line($lineID, $lineName,$colourCode,$solid);
Line::$1ineObj[$i] = $obj;
$it++;
}

return $num;

_ }

~

?>

400

Chapter 7: London Underground

It is conventient to also create a method in the Line.php class file which will display the key on the web
page. Go to the bottom of the class file and add the linelist() method shown below. Save Line.php and

copy it to the server.

Ve
public static function linelist($lineCount)
{
echo"<div class='lineTable'>";
echo"<table border=0>";
for ($i=1;%$i<=%$1lineCount; $i++)
{
$lineName=Line::$1ineObj[$i]->1ineName;
$colourCode=Line::$1ineObj[$i]->colourCode;
$solid=Line: :$1ineObj[$i]->so0lid;
echo" <tr height=5px >";
echo" <td width=80px>";
if ($solid==true)
{
echo"<hr size='8"' style='background-color:rgb(".$colourCode."); " '></td>";
}
else
{
echo"<hr style='height: 4px; border: 1px solid [:il
rgb(".$colourCode."); "></td>";
¥
echo" <td width=40></td>";
echo" <td style='font-size: 14px;'>".$lineName."</td></tr>";
¥
echo"</table>";
echo"</div>";
_ J
}
?>

Return to the addLines.php file and add program code at the beginning of the <body> section as shown

below. This will load the Underground line records from the database then display the map key.

<body>
<?
include('staffMenu.php');

include('Line.php');
$1lineCount=Line: :loadLines();
Line::linelist($1lineCount);

?>

<script type="text/javascript">

Save addLines.php and copy it to the server. Run the website, selecting the 'Add Underground line' option.

It may be necessary to hold down 'CTRL' whilst clicking the refresh icon, to ensure changes to the style

sheet take effect. Lines should be listed in alphabetical order, with colour codes displayed.

401

Web-based programming projects

King's Cross
St Pancras, Line name
\ () Old Street = Colour code || 7 solid
Farringdon R——
x | add line |
re Russell
Square
Liverpool
Street =
Aldga = Bakerloo
fovent Garden
f——
St Paul's Central
ter Square e Circle
=2=Cannon Street Monument Tower — District
<= Hill
Mansion House Fancaren Street ————— DLR
N =l T i i
& == Blackfriars 5 TR Hammersmith and City
s / P o
Temple s ‘ Jubilee
Yy 4 L) —) ———— London Overground
bankment & 4 London
P 4 $ Bridge Bermon : London Trams

It is left as a programming exercise to produce edit and delete methods for Underground lines if required.
We will now move on to the task of entering lines to connect stations.

Routes will be entered on a new web page. Open a blank file and add the lines of program code below.
Save the file as addRoutes.php.

<html>
<head>
<title>London Underground route planning</title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
<script src="p5.js"></script>
<script src="p5.dom.js"></script>
</head>
<body>
<?
include('mapFunctions.php');
include('staffMenu.php');
include('Line.php');
$lineCount=Line::loadLines();
Line::1inelist($lineCount);
?>
</body>
</html>

After loading various resource files required by the page, the program displays the key panel which lists the
underground lines and shows their colour codes.

Return to the <body> section of the file and add the lines of p5.js JavaScript code shown below. The
program works in the same way as previous pages, loading the underground map image and displaying it in
a scrolling window. Save the addRoutes.php file and copy it to the server.

/ = N
. Goodge Russell g, pican

Street Square

== Moorgate

Liverpool
Street ==

urt Road

Holborn Chancery Lane

Bank Aldga — Bakerloo
Covent Garden
St Paul's I Central
Leicester Square)
== Circle
==Cannon Street

Monument Tower — istri
<= Hill District

Charing Mansion House % Fanchurch Street DLR

Cross
402 RoBiackhios River Thames — Hammersmith and City

Chapter 7: London Underground

$lineCount=Line::loadLines();
Line::linelist($1lineCount);
?>

<script type="text/javascript">
var VscrollPosition=300;

var HscrollPosition=400;

var Vscroll=false;

var Hscroll=false;

function preload()
{

imgl=1loadImage("tubemap.jpg");
}

function setup()

{
}

function draw()
{
transV
transH
push();
translate(-transH, -transV);
image(imgl, o0, 0);
pop();
Hscrollbar(HscrollPosition);
Vscrollbar(VscrollPosition);
x=mouseX;
y=mouseY;
scrollMove();

}

</script>

createCanvas (1000, 654);

map(VscrollPosition, 0,
map(HscrollPosition, 0,

(height-14), 0, 1890-height);
(width-14), @, 2560-width);

</body>
</html>

Run the website, selecting the 'Add link to route' option. Check that the scrolling map window works
correctly, and that the list of underground lines is displayed to the right of the window.

Return to the addRoutes.php file. We will now add a drop down list which will allow the user to select an
underground line along which they may enter a sequence of stations. Go to the start of the <body> section

and add the lines of program code below. The first Line in the alphabetical list will be set as the default

value.

<body>

<?
include ('mapFunctions.php');
include('staffMenu.php');
include('Line.php');
$1lineCount=Line: :loadLines();
Line::linelist($lineCount);

$lineWanted=Line::$1ineObj[1]->1ineName;

$newLine=$ REQUEST['lineWanted'];
if (strlen($newLine)>1)
$lineWanted=$newlLine;

?>

<script type="text/javascript">

403

Web-based programming projects

Go now to the <script> block and add program code to the setup() function as shown. The lines of code
begin by converting the set of PHP Line objects into an equivalent set of JavaScript objects. The names of
the underground lines are then inserted into a drop down selection list. Buttons are added to allow the
user to save or cancel a sequence of stations selected on the map.

function setup()

{
createCanvas(1000, 654);

//' lineCount= <? echo json_encode($lineCount); ?>; \\
lineObj = <? echo json_encode(Line::$1ineObj); ?>;
lineWanted = <? echo json_encode($lineWanted); ?>;
sel = createSelect();
sel.position(1050, 80);
sel.size(250, 30);
sel.changed(selectEvent);
for (i=1;i<=lineCount;i++)
{

sel.option(lineObj[i].lineName);

sel.selected(linelWanted);
button = createButton('add links');
button.position(1100, 200);
button.mousePressed(savelLinks);
button = createButton('clear');
button.position(1200, 200);
\\7 button.mousePressed(clearLinks); //

}

When an underground line is selected from the drop-down list or one of the buttons is clicked, a JavaScript
function will be called to process the request. Go to the bottom of the <script> block and insert the blank
functions; we will return later to add program code to these.

Hscrollbar(HscrollPosition);
Vscrollbar(VscrollPosition);
x=mouseX;

y=mouseY;

scrollMove();

}
4)

function selectEvent()

{
}

function savelinks()

{
}

function clearLinks()

{
}

.

</script>
</body>
</html>

404

Chapter 7: London Underground

Save the addRoutes.php file and copy it to the server. Refresh the ' Add link to route' page. A drop-down
selection box should list the underground lines, and two buttons have been added as in the example below.

Edit station Add link to route View User map Log out

o
| Bakerloo T ‘

[) Cld Street==

-
ng's Cross
Lk Pancras

add links | | Clear |
Russell
Square
Liverpool
Street ==
Aldga —— Bakerloo
arden
" [
StPaul's | Central
= ‘ = Circle
SECannon Stiear Monument Tower — District
<=2 Hill
Manslan House 0 Fanibw ich Sireet | — DLR

Return to the <body> section of the addRoutes.php file and add the lines of program code shown below.

$lineWanted=Line: :$1ineObj[1]->1ineName;

$newLine=$_REQUEST['lineWanted'];

if (strlen($newLine)>1)
$lineWanted=$newLine;

echo'"<div class='linkTable'>";
echo"<table border=0>";
for ($i=1;%$i<=%$lineCount; $i++)
{
$lineName=Line::$1ineObj[$i]->1ineName;
if ($lineName==$lineWanted)
{
$colourCode=Line::$1ineObj[$i]->colourCode;
$solid=Line::$1ineObj[$i]->solid;
echo" <tr height=5px >";
echo" <td width=80px>";
if ($solid==true)
{
echo"<hr size='8"' style='background-color:rgb(".$colourCode."); '></td>";
}
else
{
echo"<hr style='height:4px; border:1px solid rgb(".$colourCode.");'></td>";
}
echo" <td width=40></td>";
echo" <td style='font-size: 14px;'>".$lineName."</td>";
echo"</tr>";
}
}
echo"</table>";
_ echo"</div>";)
?>

<script type="text/javascript">

405

Web-based programming projects

We have improved the display by showing the currently selected underground line, along with its colour
code, in a small panel beneath the drop-down list box.

Bakerloo T |

] Bakearloo DLR T

e | DOLR

Go now to the empty selectEvent() function and add a line of program code as shown. This will cause the
page to be reloaded when a different underground line is selected, allowing the small panel containing the
line name and colour code to be redrawn.

function selectEvent()

{
(window.location = "addRoutes.php?lineWanted="+sel.value(); J

}

Save the addRoutes.php file and copy it to the server.

Finally, open the styleSheet.css file and add formatting commands for the linkTable division as shown
below. Save the styleSheet.css file and copy it to the server.

div.linkTable {
position: absolute;
top: 120px;
left: 1040px;
width: 280px;
background-color: white;

Refresh the 'Add link to route' page. It may be necessay to hold down the CTRL key whilst clicking the page
refresh icon, to ensure that the update to the style sheet has been applied to the page.

Check that the correct colour code and line name is displayed when a new selection is made from the drop-
down list when the page is reloaded.

Iiford District v

nor Park
C— District
Woodgrange
| Park
\ Dagenham
Dapenim e | addlinks | | clear |

Becontree

The next step is to add station markers to the map. We can make use of the displayStations() function
stored in the mapFunctions.php file to do this.

Return to the addRoutes.php file. We will begin by loading the set of Station objects. Add lines of
program code at the start of the <body> section as shown below.

406

Chapter 7: London Underground

<body>
<?
include ('mapFunctions.php');

(include ('Stations.php'); j

$stationCount=Stations::loadStations();

include('staffMenu.php');
include('Line.php');
$lineCount=Line: :loadLines();
Line::1linelist($lineCount);

Locate the setup() function in the <script> block. Add lines of program code to convert the PHP Station
objects to an equivalent set of JavaScript objects.

function setup()

{
createCanvas (1000, 654);
stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

lineCount= <? echo json_encode($lineCount); ?>;
lineObj = <? echo json_encode(Line::$1ineObj); ?>;
lineWanted = <? echo json_encode($lineWanted); ?>;

Go now to the draw() function and add a line of code to call the displayStations() function.

translate(-transH, -transV);
image(imgl, 0, 0);
pop();

(: displayStations(255,255,255); :)

Hscrollbar(HscrollPosition);
Vscrollbar(VscrollPosition);

Save the addRoutes.php file and copy it to the server. Refresh the page and check that station markers are
displayed as white circles.

We will now develop the user interface to allow underground routes to be entered. This will be done by
dragging the mouse across a sequence of stations.

Farringd
Piccadilly
— Piccadilly
ent Garden
Lancaster =
addhnks[] dear|

Leicester Square

3% Gate
Hyde Par er

nsington

== Canr

\ Piccadilly
Circus

Each Station object will be allocated a corresponding variable in a stationSelected[] array. The array

values will be initialised to 0, indicating that no stations have been selected on the map. When the user

drags the mouse over a station symbol or clicks on a symbol, the corresponding array value will be reset to
1 to indicate that the station has now been selected.

407

Web-based programming projects

Return to the addRoutes.php file and locate the <script> block. Insert a line of code to define the
stationSelected|] array.

var VscrollSelected=false;
var HscrollSelected=false;

(: var stationSelected = [];)

function preload()

Go now to the setup() function and add lines of code to intialise each element of the stationSelected]]
array to 0.

stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

for (i=1;i<=stationCount ;i++)

{
)

lineCount= <? echo json_encode($lineCount); ?>;

stationSelected[i]=0;

Move now to the draw() function and add the block of program code shown below.

image(imgl, 0, 0);

pop();

displayStations(255,255,255);
4 if (mouselsPressed==true) N
{

1f((x<940)8&(y<580))

stationID=0;

for (i=1;i<=stationCount ;i++)

{
xCentre=int(stationObj[i].xpos);
yCentre=int(stationObj[i].ypos);
Xdiff = abs(xCentre-(x+transH));
Ydiff = abs(yCentre-(y+transV));
if ((Xdiff<10)&&(Ydiff<10))

stationID=stationObj[i].stationID;
xCentreWanted=stationObj[i].xpos;
yCentreWanted=stationObj[i].ypos;
stationSelected[i]=1;

}
}
}
for (i=1;i<=stationCount ;i++)
{
xCentre=int(stationObj[i].xpos);
yCentre=int(stationObj[i].ypos);
Xpos = XxCentre-transH;
ypos = yCentre-transV;
if (stationSelected[i]==1)
{
£i11(255,0,0);
ellipse(xpos,ypos,14,14);
}
NG J

Hscrollbar(HscrollPosition);

408

Chapter 7: London Underground

When the user drags or clicks the mouse on the map, the program will check for any station within 10 pixels
of the mouse pointer. If found, the corresponding stationSelected[] array element will be setto 1. A
program loop then checks the array and highlights all selected stations in red.

Save the addRoutes.php file and copy it to the server. Refresh the 'Add link to route' page. It should now
be possible to select a series of stations along an underground line by clicking or dragging the mouse over
the station symbols.

You may discover a couple of problems. If a series of stations are highlighted then an underground line is
selected from the drop-down list, the highlighting is lost when the page reloads. To avoid this, we must
retain the values in the stationSelected[] array when the page is reloaded. Another fault is that the scroll
position of the map may change during the page reload. This can be avoided by retaining the values for the
horizontal and vertical scroll positions.

Return to the addRoutes.php file and add lines of program code at the start of the <body> section. These
reload the values for the array and scroll positions when the page is reloaded.

</head>
<body>
<?

$selectString=$ REQUEST['selectString'];
$lineChange=$_REQUEST['lineChange'];
$Hscroll=$ REQUEST['Hscroll'];
$Vscroll=$ REQUEST['Vscroll'];

include ('mapFunctions.php');
include ('Stations.php');

Locate the selectEvent() function. Replace the window.location line, so that data for the selected stations
and map scroll positions will be included in the URL when the page is reloaded.

function selectEvent()
{
window.location = "addRoutes.php?lineWanted="+sel.value()+"&Vscroll="+
VscrollPosition+ "&Hscroll="+HscrollPosition+"&selectString="
+selectString+"&lineChange=YES";
}

A convenient way to transfer the stationSelected|] array is to convert it into a string, with each array
element separated by a comma. For example, the sequence of values:

stationSelected[1]=0 : stationSelected[2]=1 : stationSelected[3]=1 : stationSelected[4]=0
is transferred as the string: selectString = "0,1,1,0"

Go to the start of the <script> block and add a line of program code to define the selectString variable.

var HscrollSelected=false;
var stationSelected = [];

(: var selectString;]

function preload()

409

Web-based programming projects

Move now to the setup() function and add the block of program code shown below. This code converts
the input variables from PHP to JavaScript, the uses the scroll values to reset the position of the map. The
selectString variable is then split at each comma to recreate the stationSelected[] array.

stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

/,» selectString= <? echo json_encode($selectString); ?>; \\
lineChange= <? echo json_encode($lineChange); ?>;
Hscroll = <? echo json_encode($Hscroll); ?>;
Vscroll = <? echo json_encode($Vscroll); ?>;
if ((Hscroll»>@)|]|(Vscroll>e))
{
VscrollPosition=Vscroll;
HscrollPosition=Hscroll;
}
if (lineChange =="YES')
{

}

else

{

stationSelected=selectString.split(",");

for (i=1;i<=stationCount ;i++)

{
stationSelected[i]=0;

}

@)

lineCount= <? echo json_encode($lineCount); ?>;

It just remains to add code to create the selectString variable before the page is reloaded.

Go to the draw() function and add the lines of program code shown.

function draw()

{

selectString="";
for (i=1;i<=stationCount ;i++)

{

}

transV = map(VscrollPosition, @, (height-14), @, 1890-height);
transH = map(HscrollPosition, @, (width-14), 0, 2560-width);

selectString=selectString+', '+stationSelected[i];

Save the addRoutes.php file and copy it to the server.

Refresh the 'Add link to route' page. Selected stations should now be retained if the line is changed, and
the map should be redrawn with the scroll position unchanged, as in the example below.

410

Chapter 7: London Underground

Bromley- [
M by-Bow \ Bakerloo b

Church

p———-]
Devons Road Bakerloo

Langdon Park

All Saints

Bromley-
by-Bow

Bow
Church

—— DLR

East
India

Blackwall

Westferr:
L4 Devons Road

Langdon Park

Al Sai ——
St | addlinks | | clear |

use ==

East
India

Blackwall

Westferry

A final task is to activate the 'clear' button. Return to the addRoutes.php file and locate the clearLinks()
function. Add the line of program code shown below, then re-save the file and copy it to the server. Check
that stations can be selected, then the selection cancelled with the ‘clear’ button.

function clearLinks()
{
window.location = "addRoutes.php?Vscroll="+VscrollPosition :i
+"&Hscroll="+HscrollPosition;
}

We now have a functioning user interface and can move on to record lists of the links entered. These lists
can then be stored in the database and used in calculating the most suitable journey routes. A first step

will be to collect the ID numbers of stations as they are selected and build these into a string of data. The
link string will be displayed on the web page for test purposes, so that we can check that stationID values

are being added correctly.

Farrin;
\Piccadilly v
j=———] Piccadilly
8,51,50,24,17,96,
e | add links | | clear |
Leicester Square
Piccadilly ==Ca
Circus

Return to the addRoutes.php file to add the program code which will record the station sequences.

Go to the start of the <script> block and insert two new variables:

var stationSelected = [];
var selectString;

var linkString="";
var currentStation=0;
function preload()

{

411

Web-based programming projects

Move up to the start of the <body> section and add a line of code to obtain the linkString value when the
page is reloaded.

<body>
<?

($1linkString=$ REQUEST['linkString'];)

$selectString=$ REQUEST['selectString'];
$lineChange=$_ REQUEST['lineChange'];

Within the setup() function, add lines of code as shown below. The PHP linkString is converted to an
equivalent JavaScript variable, then displayed as a caption below the selection box on the right of the page.

lineCount= <? echo json_encode($lineCount); ?>;
lineObj = <? echo json_encode(Line::$1ineObj); ?>;
lineWanted = <? echo json_encode($lineWanted); ?>;

linkString= <? echo json_encode($linkString); ?>;
captionC = createkElement('h3', 'linkString');
captionC.position(1050, 1490);
captionC.html(1linkString);

sel = createSelect();
sel.position(1050, 80);
sel.size(250, 30);

Go next to the draw() function and add lines of program code as shown below.

1f((x<940)8&(y<580))

stationID=0;
for (i=1;i<=stationCount;i++)

{
xCentre=int(stationObj[i].xpos);
yCentre=int(stationObj[i].ypos);
[if (!(i==currentStation))
{

Xdiff = abs(xCentre-(x+transH));
Ydiff = abs(yCentre-(y+transV));
if ((xdiff<10)&&(Ydiff<10))

{

stationID=stationObj[i].stationID;
xCentreWanted=stationObj[i].xpos;
yCentreWanted=stationObj[i].ypos;
stationSelected[i]=1;

currentStation = ij;
if ((linkString==null)|]|(1linkString=="null"))
linkString=stationObj[currentStation].stationID+",";
else
linkString += stationObj[currentStation].stationID+",";
captionC.html(linkString);

412

Chapter 7: London Underground

The p5.js programming system operates by repeating the draw() function at a frame rate of 30 times per
second. This allows smooth animation for scrolling the map and dragging the mouse to highlight stations.
However, it is necessary to add the

if (!(i==currentStation))
condition to ensure that each new stationID is added to the link string only once, and not every time that
the draw() function is repeated.

Finally, go to the selectEvent() function and update the window.location line, so that the linkString variable
is included in the URL when the page is reloaded after selecting an underground line.

function selectEvent() {

+VscrollPosition+"&Hscroll="+HscrollPosition+

window.location = "addRoutes.php?lineWanted="+sel.value()+"&Vscroll=" Ejl
"&lineChange=YES&linkString=" +linkString+"&selectString="+selectString;

Save the addRoutes.php file and copy it to the server. Run the website, logging-in as a member of staff.
Click the 'Add link to route' menu option.

Select a sequence of stations, so that the station markers are highlighted in red as the mouse is dragged
over them. Check that numbers are added to the link string which is displayed below the drop-down
selection box for underground lines.

Go to the PHP MyAdmin web page and select the stations table. Check that the correct sequence of
stationlID values are now shown in the link string.

With the station selection procedure working correctly, we can now move on to store the data in the
database.

Return to the addRoutes.php file and add lines of program code to the savelinks() function as shown.
Save the addRoutes.php file and copy it to the server.

function savelLinks()
{
result = confirm('Add these links for the '+lineWanted+' line');
if (result==true)
{
window.location = "updateConnections.php?lineName=" E:il
+sel.value()+"&linkString="+1inkString;
}
¥

Open a blank file and save it as updateConnections.php. Copy the file to the server.

Run the 'Add link to route' web page and highlight a sequence of stations along an underground line. Select
the correct underground line from the drop-down list. Click the 'add links' button. A confirm dialogue box
should appear.

Add these links for the Central line View user map

Central

e Central

413

Web-based programming projects

Clicking 'OK' should take you to the blank updateConnections.php page. This page will handle file
operations. When the program is completed it will not be visible to the user, but we can temporarily allow
the page to display information for test purposes. The first piece of data needed is the ID number of the
underground line. Go to updateConnections.php and add the following code:

<?
$1lineName=$_REQUEST['lineName'];
echo"<p>lineName = ".$lineName;
include('Line.php');
$lineID=Line: :getIDfromName($lineName);
echo"<p>Line ID = ".$1linelD;

?>

Save the updateConnections.php file and copy it to the server.

It is necessary to add another method to the Line class to obtain the linelD. Open the Line.php file and add
the method shown below. Save the file and copy it to the server.

public static function getIDfromName($lineName))
{
$lineCount = Line::loadLines();
for($i=1;%$i<=$1lineCount;$i++)
{
if (Line::$1lineObj[$i]->1lineName == $lineName)
{
$1lineID = Line::$1ineObj[$i]->1inelD;
}
}
return $1inelD;
N J
}
?>

Return to the 'Add link to route' web page, enter a sequence of stations and select the corresponding
underground line. Click the 'add links' button and select 'OK'.

The updateConnections.php page should open, with the name and ID number for the underground line
displayed. Go the the PHP MyAdmin web page and open the line table. Check that the linelD value is
correct.

The next step is to display the sequence of stations which were selected. Return to the
updateConnections.php file and add the lines of program code below.

include('Line.php');
$lineID=Line: :getIDfromName($lineName);
echo"<p>Line ID = ".$linelD;

4 $1linkString = $_REQUEST['linkString']; A
$linkArray=(explode(",",$1linkString));

$linkCount= count($linkArray);

echo"<p>StationID links:";

for ($i=0;%$i<$linkCount;$i++)

{

echo"
".$linkArray[$i];
_ J

?>

414

Chapter 7: London Underground

Save the updateConnections.php file and copy it to the server

correct sequence of stationID numbers are now listed.

lineName = Piccadilly

Line ID = 168
StationlD links:
8

51

50

24

. Refresh the web page and check that the

We can now move on to store the sequence of stations in the database. Go to the PHP MyAdmin website
for your database. List the existing tables and select the 'new' option.

Create a table with the name routePoint. Insert fields as shown below. All fields are of the data type
integer. Select routePointID as the primary key, and set this to auto-increment as records are added.

AUTO_INCREMENT

MName Type Collation Attributes Mull Default Comments Extra
1 routePointlD 2> int(11) Mo Mone
2 linelD int{11) Mo Mane
3 stationlD int{11) Mo Mane
4 pointer int{11) Mo Mane
5 backpointer int{11) Mo Mane
& position int{11) Mo Mone

Route segments will be stored as linked lists. A new routePoint record will be created for each selected

station and will be allocated a routePointID by the database, as in this example:

12 routePointlD | stationlD | pointer | backpointer
23 1 12 2 -1
2 23 3 1
& 3] 4 2
4 15 -1 3
15

The station will be identified by its stationID. A pointer will be set to the routePointID of the next station

along the line, with the sequence terminated by a -1 value. A backpointer sequence will operate in the

revese direction, indicating the previous station visited. The use of both a pointer and backpointer makes it
easy to follow the station sequence in either direction.

We will create a RoutePoint class to handle data transfers between the web page and the database.

The class begins by defining the attributes for a routePoint object, which correspond to the fields of the

routePoint table. A constructor method is provided, along with a method for saving routePoint records into

the database.

Open a blank file and add the program code below. Save the file as RoutePoint.php.

415

Web-based programming projects

<?
class RoutePoint
{
public static $pointObj = array();
public $routePointID;
public $1inelID;
public $stationID;
public $pointer;
public $backpointer;
public $position;

function __ construct($routePointID,$1linelD,$stationID, E:il
$pointer, $backpointer,$position)
{
$this->routePointID = $routePointID;
$this->1ineID = $1inelD;
$this->stationID = $stationID;
$this->pointer = $pointer;
$this->backpointer = $backpointer;
$this->position = $position;

}
public static function addRoutePoint($linelID,$stationID, E:il
$pointer, $backpointer,$position)
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query = "INSERT INTO routePoint VALUES ('','$lineID’', '$stationID’,
'$pointer’', '$backpointer’', '$position’)";
$result=mysqli_query($conn, $query);
$routePointID = mysqli_insert_id($conn);
mysqli_close($conn);
return $routePointID;
}
}
?>

=

We can now develop an algorithm for inserting sequences of stations along an underground line. This is

summarised in the flowchart below.

The process continues, with the program returning to update the pointer of the previous station after each

When the first station is entered, the backpointer is set to -1. The pointer value is not yet known,
as this will depend on the routePointID which is allocated to the second station by the database

auto-numbering.

When the second station has been entered, the program can return to update the pointer value for
the first station. The backpointer value for the second station will be set to the routePointID of the

first station, which is now known.

new entry. When the last station is reached, the pointer value is set to -1.

416

Chapter 7: London Underground

Start

Y

Get stationID and linelD for the
first routePoint record

Y

Set backpointer and pointer
values to -1

Y

Save the record and obtain the
routePointID as an autonumber

routePoint

table

Y

Get stationlD and linelD for the
next routePoint record

\
Set backpointer value to the
previous routePointiD.
Set pointer to -1

Y

Save the record and obtain the
routePointID as an autonumber

routePoint

table

Y

Acess the previously saved record and reset
the pointer to the new routePointiD

'

Anaother route
point?

No

Stop

We will add a method to the RoutePoint.php class file to update the pointer value in a routePoint record.
Insert the code shown below at the end of the file. Save the file and copy it to the server.

417

Web-based programming projects

/,public static function updatePointer($IDwanted,$pointer) N
{

include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);

if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="UPDATE routePoint SET pointer='$pointer' WHERE E:il
routePointID="'$IDwanted'";

$result=mysqli_query($conn, $query);
mysqli_close($conn);

\J Y,
}

Return to updateConnections.php and add a line at the beginning to include the routePoint class.

<?

(:include('RoutePoint.php');)

$lineName=$_REQUEST['lineName'];
echo"<p>lineName = ".$lineName;

Program code is required in the updateConnections.php file to implement the algorithm for uploading a
station sequence to the database. Add lines to the end of the program as shown below.

echo"<p>StationID links:";
for ($i=0;$%$i<$1linkCount;$i++)
{

}

addLinks($1ineID, $linkArray);

echo"<form method=post action='addRoutes.php'>";
echo"<p><input type=submit value='continue'>";
echo"</form>";

echo"
".$linkArray[$i];

function addLinks($1ineID,$linkArray)
{
$1linkCount= count($linkArray);
for ($i=0;%$i<($1linkCount-1);%$i++)
{
$stationID=$linkArray[$i];
$pointer=-1;
$backpointer=-1;
if ($i>e)
$backpointer=$previous;
$position=0;
$routePointID = RoutePoint::addRoutePoint($lineID,$stationID, E:il
$pointer,$backpointer,$position);
if ($i>e@)
{

RoutePoint: :updatePointer($previous,$routePointID);

}

$previous=$routePointlID;

?>

418

Chapter 7: London Underground

A loop operates for each of the selected stations. A record is inserted into the routePoint table by means of
the method:

addRoutePoint(lineID, stationID, pointer, backpointer, position)

using a provisional value for pointer. The program then returns to update the pointer value when the route
point ID for the next station has been allocated by the database. The update is carried out by:

updatePointer(previous routePointID, new routePointID);

Save the updateConnections.php file and copy it to the server. Run the website, log-in as a member of
staff and select the 'Add link to route' option. Choose a simple underground line with no branches and no
other line running alongside. Use the mouse to highlight a series of about eight stations along a mid
section of the line, and select the name of the line from the drop down list.

Goodge

Isueet

Tottenham Holborn
Court Road

water

Marble Arc

Covent Garden

Lancaster
Rueensway Gate
Leicester Square

Piccadilly

=
Circus

Street Kensington

Mansi¢

Knightsbridge ":‘\\ == Charing ()
«| Cross

R <& == Blackf|

pcester

Click the 'add links' and 'OK' buttons to reach the update connections page, then click 'continue’ to return
to the map display.

routePointlD. linglDd stationlD pointer backpointer position
1 16] 2 -1
2 15 51 3 1 0
3 16 &0 4 2 0
4 16 24 & 3 0
5 16 17 & 4 0
i 16 96 T 5 0
7 16 280 2 & 0
3 16 54 -1 T 0

Go to the PHP MyAdmin web page and open the routePoint table. Check that a correct linked list of
stations has been created. The pointer sequence should terminate with a -1 value, and the backpointer
sequence should terminate with -1 when followed backwards from the last table entry. All position values
are currently set to a default value of 0.

Select a sequence of stations along a central section of another simple underground line and add these to
the database. Refresh the database table display. Check that the new set of routePoint records is correctly
connected by pointers to produce a second linked list

The route segments just entered can now be marked on the 'Add link to route' map display. There is a
problem that lines drawn with the correct colour codes will not be visible when superimposed on the map
image, so a neutral colour pattern will therefore be used for all underground lines.

Return to addRoutes.php and add lines of code near the beginning of the file to load the route points from
the database table.

419

Web-based programming projects

include('mapFunctions.php');
include ('Stations.php');
$stationCount=Stations::loadStations();

include('RoutePoint.php');
$pointCount=RoutePoint: :loadPoints();

include('staffMenu.php');

Move to the setup() function and add lines of program code to convert the set of PHP route point objects

into an equivalent set of JavaScript objects, as shown below.

function setup()

{
createCanvas(1000, 654);

stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

pointObj = <? echo json_encode(RoutePoint::$pointObj); ?>;
pointCount = <? echo json_encode($pointCount); ?>;

selectString= <? echo json_encode($selectString); ?>;
lineChange= <? echo json_encode($lineChange); ?>;

Move now to the draw() function and add a line of code to call a new function which we will add
addRoutes.php file and copy it to the server.

. Save the

image(imgl, 0, 0);

pop();
displayStations(255,255,255);

(: plotLines();

)

if (mouseIsPressed==true)

Open the mapFunctions.php file. It will be convenient to store the graphics functions in this file so that
they can be accessed by more than one web page. Add the two functions shown below, which use the ID

number of a station to obtain its x,y pixel coordinates on the underground map.

4 function getXfromID(stationWanted)
{
Xpos = 0;
for (n=1;n<=stationCount;n++)
{
if (stationObj[n].stationID == stationWanted)
xpos = stationObj[n].xpos;
}

return xpos;

}
function getYfromID(stationWanted)
{
ypos = 0O;
for (n=1;n<=stationCount;n++)
{
if (stationObj[n].stationID == stationWanted)
ypos = stationObj[n].ypos;
¥

return ypos;

_

~

</script>

420

Chapter 7: London Underground

Also add the plotLines() function shown below. Save mapFunctions.php and copy it to the server.

-

function plotLines()
{
for (i=1;i<=lineCount;i++)
{
currentLineID=1ineObj[i].1lineID;
for (j=1;7j<=pointCount;j++)
{
if ((pointObj[j].backpointer==-1)&&(pointObj[j].lineID==currentLinelD))
{
currentPointer=pointObj[j].pointer;
stationIDwanted=pointObj[j].stationID;
finished=false;
oldX=getXfromID(stationIDwanted);
oldY=getYfromID(stationIDwanted);
oldX = int(oldX-transH);
oldY = int(oldY-transV);
count=0;
while(finished==false)
{
for (n=1;n<=pointCount;n++)
{
if (pointObj[n].routePointID==currentPointer)
pos=n;
}
newPointer=pointObj[pos].pointer;
stationIDwanted=pointObj[pos].stationID;
xpos=getXfromID(stationIDwanted);
ypos=getYfromID(stationIDwanted);
xpos = int(xpos-transH);
ypos = int(ypos-transV);
strokeWeight(4);
stroke(9);
line(oldX,o0ldY,xpos,ypos);
strokeWeight(2);
stroke(255);
line(oldX,0ldY,xpos,ypos);
strokeWeight(1);
stroke(255,0,0);
line(oldX,o0ldY,xpos,ypos);
oldX=xpos;
oldY=ypos;
if (currentPointer<®)
finished=true;
currentPointer=newPointer;

}

_ !}

</script>

Go to the RoutePoint.php file and add the loadPoints() method shown below. Save the file and copy it to

the server.

421

Web-based programming projects

s

public static function loadPoints()
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error());
$query="SELECT * FROM routePoint";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
$i=1;
while ($i <= $num)
{
$row=mysqli_fetch_assoc($result);
$routePointID=$row["routePointID"];
$1lineID=$row["1lineID"];
$stationID=$row["stationID"];
$pointer=$row["pointer"];
$backpointer=$row["backpointer"];
$position=$row["position"];
$obj = new RoutePoint($routePointID,$linelID,$stationID,

$pointer,$backpointer,$position);

RoutePoint: :$pointObj[$i] = $obj;
$i++;
}

return $num;

=

Run the website, logging-in as staff. Select the 'Add link to route' option. The sequences of stations
entered earlier will be linked by thin red lines. The connections do not exactly follow the curves of
the underground lines on the base map, but will often be sufficiently accurate for our purposes.

Tottenham
Court Road

Lancaster

Isway Gate St Paul's

Hyde Park Corner _#2<

Piccadilly 2= Cannon Street
t Kensington Circus

In some cases, however, stations cannot be linked satisfactorily by a direct straight line. An example is the
Waterloo and City line which runs in a curve from Waterloo to Bank.

422

TOUrT nUau

Q Bank

Covent Garden

H:ﬁcnster

[sway Gate St Paul's

Leicester Square

==Cannon Street
Monum
Mansion House
= = Blackfriars =1
. e
4
/

4) T
outh 4 Londo
Isington Square Y Bridge

/ e

Chapter 7: London Underground

Fortunately it is quite simple to do this, as can now be demonstrated:

e Use the 'Add Underground line' menu option to set up the name and colour code for the Waterloo
and City line.

e (Go to the 'Add station' option and enter station symbols for Waterloo and Bank.

e Add station points at the two bends in the line, leaving the station name boxes blank and clicking
the 'hide' button.

R ==
Monument

Leicester Square

Station name

) =Cannon Street,
Charing

Monument Towerr
Cross i

it | |
W Fercomicn Jteet

River Thames

o

London Bermon

Bridge
TS hide

@le
OJ
()]

e Go to the 'Add link to route' menu option. Click on the sequence of points along the line from
Waterloo to Bank, then enter the data. The curved line connection should appear.

ccadilly
Circus ® Monument

w e

Mansion House

<= 2= Blackfriars

Note: it is important not to add an extra curve point too close to a station, within a distance of a couple of
station circle symbols, as there is a danger that the curve point may be confused with the station and cause
a program error.

We will now turn our attention to the 'View user map' option. A similar procedure can be used to display
underground lines, but in this case the lines will be drawn using their correct colour codes.

Open the staffDisplayMap.php file and add lines of code near the beginning to load the route point and
line objects from the database tables.

include ('Stations.php');
$stationCount=Stations::loadStations();

include('RoutePoint.php');
$pointCount=RoutePoint: :loadPoints();
include('Line.php');
$lineCount=Line::loadLines();

$Hscroll=$ REQUEST['Hscroll'];

Go to the <script> block and add code to convert the PHP objects to JavaScript objects, as shown below.

423

Web-based programming projects

var optionSelected= <? echo json_encode($optionSelected); ?>;
stationObj = <? echo json_encode(Stations::$stationObj); ?>;
stationCount = <? echo json_encode($stationCount); ?>;

pointObj = <? echo json_encode(RoutePoint::$pointObj); ?>;
pointCount = <? echo json_encode($pointCount); ?>;

lineObj = <? echo json_encode(Line::$1ineObj); ?>;
lineCount = <? echo json_encode($lineCount); ?>;

Hscroll = <? echo json_encode($Hscroll); ?>;

Add a line of code to the draw() function as shown below.

pop();
if (optionSelected=="map')

{
(: plotLines2();)

displayNames();
displayStations(225,225,225);

Save the staffDisplayMap.php file and copy it to the server.

Return to the mapFunctions.php file and add the plotLines2() function shown below and continued on the
following page. This is similar to the plotLines() function created earlier, but this version accesses the
colour codes for each underground line and sets the line display colour accordingly.

Save the mapFunctions.php file and copy it to the server.

function plotLines2()
{
for (i=1;i<=lineCount;i++)
{
stroke(255);
fill(e);
currentLineID=1ineObj[i].1lineID;
colourCode=1ineObj[i].colourCode;
solid=1ineObj[i].solid;
let ¢ = split(colourCode, ',");
r=int(c[@]); g=int(c[1]); b=int(c[2]);
fill(r,g,b);
stroke(r,g,b);
for (j=1;j<=pointCount;j++)

if ((pointObj[j].backpointer==-1)&&(pointObj[j].lineID==currentLinelID))
{
currentPointer=pointObj[j].pointer;
stationIDwanted=pointObj[j].stationID;
finished=false;
oldX=getXfromID(stationIDwanted);
oldY=getYfromID(stationIDwanted);
oldX = int(oldX-transH);
oldY = int(oldY-transV);
finished=false;
count=0;

continued below...

424

Chapter 7: London Underground

{

while(finished==false)

for (n=1;n<=pointCount;n++)
{

if (pointObj[n].routePointID==currentPointer)

pos=n;

}
newPointer=pointObj[pos].pointer;
stationIDwanted=pointObj[pos].stationID;
xpos=getXfromID(stationIDwanted);
ypos=getYfromID(stationIDwanted);
xpos = int(xpos-transH);
ypos = int(ypos-transV);
strokeWeight(6);
stroke(r,g,b);
line(oldX,o0ldY, xpos,ypos);
if(solid==false)
{

strokeWeight(4);

stroke(255);

line(oldX,o0ldY,xpos,ypos);
}
strokeWeight(1);
oldX=xpos;
oldY=ypos;
if (currentPointer<o)

{
}

currentPointer=newPointer;

finished=true;

J

</script>

Run the website, logging-in as staff. Select the 'View user map' option. The underground line segments

entered earlier should

be shown using the correct colour code for each line

~7 Street Square T

oxtordO O O
Circus Moorgate Li

A 7 . Chancery Lane Sty

Tottenham Holbom
O Court Road O Bank
D Covent Garden O
Green Park O StPaul's OO
O Leicester Square Monument
=
Piccadilly : Cannon Street
Circus Charing Tq
Cross .
O Mansion House
Blackfriars
St James’s
Park @) Temple O
Westminster O Embankment London B
() Bricge
waterdoo O QO O

There is a slight problem. To avoid confusion, only the actual stations should be marked by circle symbols

on the user map, and i

ntermediate points should not be marked.

425

Web-based programming projects

Go to the mapFunctions.php file and locate the displayStations() function. Modify the title line of the
function to include an additional parameter 'midpoints' as shown below. This can be set to 'YES' or 'NO',
depending on whether the mid points are to be marked by circle symbols or left blank. Add the ‘station
name =’ line and modify the ‘if...’ line as shown. Save the mapFunctions.php file and copy it to the server.

(: function displayStations(r,g,b,midpoints)
{

for (i=1;i<=stationCount ;i++)
{
xCentre=stationObj[i].xpos;
yCentre=stationObj[i].ypos;
show=true;

stationName=stationObj[i].stationName;
if ((textWidth(stationName)<8)&&(midpoints=="N0"))

{
}

if (show==true)

{

show=false;

fill(r,g,b);

stroke(9);
xpos=int(xCentre)-int(transH);
ypos=int(yCentre)-int(transV);
ellipse(xpos,ypos,14,14);

Return to the staffDisplayMap.php file locate the draw() function. Add the extra parameter to the
displayStations() function call, setting the value to 'NO' as shown below.

if (optionSelected=='map')
{
plotLines2();
displayNames();
(: displayStations(225,225,225,'N0");)
}

Save staffDisplayMap.php and copy it to the server. Re-run the 'View user map' option. Intermediate
points on the Waterloo and City line should not be marked by circles:

Court Road O Bank
Covent Garden Q

Green Park StPaul's O
Leicester Square O Monument
Piccadilly o Cannon Sireet _
Circus Charing T

55
ODro_L Mansion House
Blackfriars
St James's
toria O Park Temple
Westminster Embankment London g
Bridge
Waterloo (O) Oy

426

Chapter 7: London Underground

The key showing the colour codes for the different lines can now be added
and add lines of program near the beginning of the file to do this.

. Return to staffDisplayMap.php

include('Line.php');

$lineCount=Line: :loadLines();
$Hscroll=$ REQUEST['Hscroll'];
$Vscroll=$ REQUEST['Vscroll'];

if ($optionSelected=="map"')
{

}

Line::linelist($lineCount);

?>
<html>
<head>

Save the staffDisplayMap.php file and copy it to the server. Run the website, selecting the 'View user map'
option. Check that the list of underground lines and their colour codes is shown to the right of the map.

It is important that stations are linked in a correct sequence along each line before calculating the shortest
route between the starting point and destination. A test procedure will now be added.

Go to the staffDisplayMap.php file and locate the setup() function. Add the lines of program code shown

below.

function setup()

if ((Hscroll>@)||(Vscroll>e))

{
VscrollPosition=Vscroll;
HscrollPosition=Hscroll;
}
createCanvas (1000, 654);
4 lineWanted="Bakerloo’;)
if (optionSelected=='map')
{
sel = createSelect();
sel.position(1050, 60);
sel.size(250, 30);
for (i=1;i<=lineCount;i++)
{
sel.option(lineObj[i].lineName);
}
checkbox = createCheckbox('Check linkages', false);
checkbox.position(1080, 100);
_ J

if ((optionSelected=="'station')||(optionSelected=="editStation'))

The test procedure will number the route points in the order in which they are connected by the linked list,

as in this example for part of the Central Line:

O ‘c
Russell entral

yswater O g#ggtge O Square Barmican

Bond Qxford {

Streat Circus Moorgate

Marble Arch J Chancery Lane
ng Totienham Holoorn
bate Court Road Bank
Covent Garden
Quasnsway I@i‘:;amr Green Park StPaul's

v ‘

Check linkages

427

Web-based programming projects

Begin by creating a drop down list for selecting an underground line, and a tick box to activate the checking

procedure. Move to the draw() function and add the block of code shown below.

if (optionSelected=="map')

{
plotLines2();
displayNames();
displayStations(225,225,225,'N0");

lineWanted = sel.value();
if (checkbox.checked())
{

}

routeTest(lineWanted,lineObj,lineCount);

The program will obtain the name of the selected underground line from the drop-down list box. If the
checkbox is ticked, a procedure routeTest() will display the numbered sequence of points along the route.

Go to the end of the staffDisplayMap.php file and enter the routeTest() function shown in the two boxes

below. Save the file and copy it to the server.

//,function routeTest(lineWanted,lineObj, lineCount)
{
var p;
var finished=false;
lineIDwanted = 0;
for (i=1;i<=lineCount;i++)

if (lineObj[i].lineName == lineWanted)
lineIDwanted = lineObj[i].1linelID;
}

for(var i=1;i<=pointCount;i++)

if ((pointObj[i].backpointer == -1)8&& E:il
(pointObj[i].1lineID == lineIDwanted))
{

count=1;

current=pointObj[i].stationID;

next=pointObj[i].pointer;

finished=false;

p=i;

while (finished==false)

{
x=getStationX(current);
y=getStationY(current);
xpos=x-int(transH);
ypos=y-int(transV);
£i11(255,0,0);
stroke(0);
ellipse(xpos,ypos,20,20);
£i11(255);
stroke(255,0,90);

\\\ textSize(16);

~

428

Chapter 7: London Underground

Continued...

-

if (count<10)
text(count,xpos-6,ypos+5);
else
text (count,xpos-9,ypos+5);
count++;
textSize(12);
next=pointObj[p].pointer;
if (next== -1)
finished=true;
else
{
p=getNextArrayPosition(next);
current=pointObj[p].stationID;

</script>

Open the mapFunctions.php file and add the three small functions shown below.

function getStationX(IDwanted)

{
X=0;
for (i=1;i<=stationCount ;i++)
¢ if (stationObj[i].stationID==IDwanted)
x=stationObj[i].xpos;
}
return Xx;
}
function getStationY(IDwanted)
{
y=0;
for (i=1;i<=stationCount ;i++)
¢ if (stationObj[i].stationID==IDwanted)
y=stationObj[i].ypos;
}
return y;
}
function getNextArrayPosition(next)
{
p=0;
for (i=1;i<=pointCount ;i++)
¢ if (pointObj[i].routePointID==next)
p=1i;
}
return p;
¥

429

Web-based programming projects

The getStationX() and getStationY() functions take a stationID as the input parameter and return the map
coordinates for the station. The getNextArrayPosition() function takes a routePointID as the input

parameter, and finds the location of an object with this value in the array of routePoint objects.

Save the mapFunctions.php file and copy it to the server. Run the website, and go to the 'View user map'

option.

Select an underground line from the drop-down list for which a sequence of stations has been entered,
then tick the checkbox. The stations should be numbered in the order in which they were entered.

We will now return to the entry of sections of underground line. Due to the length of each underground
line, the user may wish to enter the route in a series of sections. An overall strategy is summarised in the
flowchart below. We will work through each of the options in the following sections.

R ———
\ 000

newStart

newFinish

Get linelD for selected underground line

!

Get newStart and newFinish stations
for the new sequence

checkConnections()

Y

Check if newStart matches the finish station of an
exisiting sequence on the selected underground line

'

Check if newFinish matches the start station of an
exisiting sequence on the selected underground line

—_— e
*—o—00 OO0
newstart newfinish
—_— —
(000) —0—00
newStart newfFinish
*—o—o0 000 +——019
newStart newFinish
R
o000
newStart newFinish

430

only newStart
links to exisiting
sequence?

connect to existing sequence

using linkAfter() function

only
newFinish links to exisiting

connect to existing sequence

using linkBefore() function

sequence?

newStart and
newFinish both link to exisiting

connect to existing sequences
using linkBetween() function

sequence?

Create new linked list

No.

\ 4

sequence

(Stop)

Chapter 7: London Underground

It is useful to summarise the procedures which are used to add underground lines to the map.

A new sequence of stations is selected. The first step is then to compare the start and finish stations of the
new sequence with the end points of any previously entered sections on the same underground line.

O 000 ©o0o—0—0—0O 0 000O0

start finish

e If no corresponding end point is found, then the new section is entered as a simple linked list.

e If a previously entered route section matches the start of the new section, then a single combined
linked list will be created by attaching the new sequence to the end of the existing station group.

e If a previously entered route section matches the finish of the new section, then a single combined
linked list will be created by attaching the new sequence to the beginning of the existing station
group.

e If previously entered route sections match both the start and finish of the new section, then a
single combined linked list will be created by attaching the new sequence to the end of the first
station group and the beginning of the second station group.

For the final sequence to be linked correctly, it is necessary for each group of stations to be linked
sequentially in the same direction along the underground line. In this example:

) GROUP 1 GROUP 2 .
O 00 0 ©O-0—0—0—0O O -0 0 0O
stlart finir:h

the station sequence in group 1 would have to be reversed before the linked lists are joined. The sequence
is group 2 is already running in the correct direction and can be linked directly.

We will first consider the case of a group of stations which are to be attached to the end of a sequence
which had been entered previously:

o 00 ©-o0—0—0—0

start finish

We will use the example of the Northern Line, as shown below. A sequence of stations from Edgware to
Brent Cross is first entered, then a further section of line from Brent Cross to Belsize Park is added:

Edgware Edgware

Burnt Oak Burnt Oak

Colindale Colindale

stationsto
be added

Hendon Central Hendon Central

Brent Cross

Golders Green mpstead Golders Green Hampstead

Hampstead

s Hill
Willesden Green inch
& e S:EF):::::‘ Belsize Park

Hill

/illesden Green

Belsize Park

Willhysen

431

Web-based programming projects

The first group of stations will be stored as a linked list, for example:

v routePointlD | stationlD | pointer | backpointer
23 1 12 2 -1
2 23 3 1
© 3 6 4 2
19 4 13 5 3
5 2 -1 4
2

The additional sequence of stations will be attached by linking the pointer and backpointer values for the
routePoint groups. There may be other records stored in the table between these blocks:

© routePointID | stationID | pointer | backpointer
23 1 12 2 -1
2 23 3 1
6 3 6 4 2
19 4 19 5 3

5 8 (31) 4 -

O 20 » 31 20 32 (5) —
O s 32 5 33 31
33 11 -1 32

O 1n

Open the updateConnections.php file and add the block of program code shown below. This begins by
calling a function checkConnections() which will determine whether the new sequence begins with the
same station as the final station of a previously entered sequence. If so, a function linkAfter() will add the
new sequence to the end of the exisiting sequence with the pointers connected as in the example above.

echo"<p>StationlID links:";
for ($i=0;%$i<$linkCount;$i++)
{

}

4 $routePointCount=RoutePoint::loadPoints();
$result = checkConnections($lineID,$linkArray,$linkCount,$routePointCount);
$startRoutePointID=$result[0];
$finishRoutePointID=$result[1];
if (($startRoutePointID>0)&&($finishRoutePointID==0))
linkAfter($linkCount, $linkArray,$startRoutePointID,$1ineID);
else
_ if (($startRoutePointID==0)&&($finishRoutePointID==0)) Y,

addLinks($1lineID, $1linkArray);
echo"<form method=post action='addRoutes.php'>";

echo"<p><input type=submit value='continue'>";
echo"</form>";

echo"
".$linkArray[$i];

\

Go to the end of the updateConnections.php file and add the checkConnections() function shown below.

432

Chapter 7: London Underground

function checkConnections($lineID,$linkArray,$linkCount,$routePointCount)
{

$startID =$linkArray[0];

$finishID =$linkArray[$linkCount-2];

$startRouteID = ©0;

$finishRouteID = 0;

for ($j=1;%j<=%$routePointCount;$j++)

{

if(RoutePoint: :$pointObj[$]j]->1ineID == $1inelD)

if((RoutePoint::$pointObj[$j]->pointer == -1)]|| E:il
(RoutePoint: :$pointObj[$]j]->backpointer == -1))
{

if (RoutePoint::$pointObj[$j]->stationID == $startID)
$startRouteID =RoutePoint::$pointObj[$j]->routePointID;

if (RoutePoint::$pointObj[$j]->stationID == $finishID)
$finishRouteID =RoutePoint::$pointObj[$j]->routePointID;

}

}
return array($startRouteID,$finishRouteID);

}

.

Continuing to work at the end of the updateConnections.php file, add the linkAfter() function:

/

function linkAfter($linkCount,$linkArray,$startRouteID,$1lineID)
{
echo"
Existing segment goes first, then new addition";
$pointer = RoutePoint::getPointerFromRoutePoint($startRoutelD);
if ($pointer == '-1")
echo"
current sequence correct";
else
{
echo"
current sequence must be reversed";
RoutePoint: :reverseSequence($startRoutelID);
¥
$linkCount= count($linkArray) - 1;
$previous = $startRoutelD;
for ($i=1;%i<$linkCount;$i++)
{
$stationID=$1linkArray[$i];
$pointer=-1;
$backpointer=$previous;
$position=0;
$routePointID = RoutePoint::addRoutePoint($lineID,$stationID, E:il
$pointer,$backpointer,$position);
RoutePoint::updatePointer($previous, $routePointID);
$previous=$routePointlID;

}

!

J

The function displays comments on screen, to allow us to check that it is operating correctly. A

requirement for joining the new sequence of stations to the existing sequence is that both must run in the

same direction along the route.

433

Web-based programming projects

Is Hill

Willesden Green Finchley Road @
R = &ego;:algj/!elsize Park

D

If the existing station sequence is found to run in the opposite direction, this can easily be reversed by
swapping the pointer and backpointer values of the linked list. For example:

2 routePointlD | stationlD | pointer | backpointer
23 1 12 2 -1
2 23 3 1
6 3 5] 4 2
19 4 15 5 3
5 2 -1 4

8

NS
12
routePointlD | stationlD | pointer | backpointer
23 1 12 -1 2
23 3
6 5] 4
19 19 5
8 -1
g

Save the updateConnections.php file and copy it to the server.

becomes:

| s |
F= VR g S

Open the RoutePoint.php file and add the three methods shown on the next page. These carry out the
exchange of the pointers and backpointers if required. Save the file and copy it to the server.

Run the website. Enter stations and a section of underground line, for example: the Northern line stations
from Edgeware to Brent Cross, numbered 1 —5 below. Return to the 'Add link to route' option and select a
further group of stations, beginning at the last point of the previous group — Brent Cross. After the new
stations are entered, check that a continuous line appears on the 'View user map' page. Select the 'Check
linkages' option, and make sure that all stations are linked in the correct number sequence.

Edgware
Burnt Oak
Colindale

Hendon Central

Hampstead

Hill

Villesden Green

lsiz: b
Kilburn Belsize Park

434

Chapter 7: London Underground

-
{

$pointer=0;
$pointCount =

{
{
}
}
return $pointer;

}

$pointer =

{
$pointCount =

while($current>-1)

{
{

$pointer =
$backpointer

break;

}

{

include ('user.inc');
$conn =

mysqli_close($conn);

RoutePoint: :loadPoints();
for($i=1;%$i<=$pointCount;$i++)

RoutePoint: :loadPoints();
$current = $startRoutelD;

for($i=1;%$i<=$pointCount;$i++)

$result=mysqli_query($conn, $query);

public static function getPointerFromRoutePoint($routePoint)

if (RoutePoint::$pointObj[$i]->routePointID == $routePoint)

RoutePoint::$pointObj[$i]->pointer;

public static function reverseSequence($startRoutelD)

if (RoutePoint::$pointObj[$i]->routePointID == $current)

RoutePoint: :$pointObj[$i]->pointer;
RoutePoint: :$pointObj[$i]->backpointer;
RoutePoint: :updatePointer($current, $backpointer);
RoutePoint: :updateBackpointer($current,$pointer);
$current = $pointer;

public static function updateBackpointer($IDwanted, $backpointer)

new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

$query="UPDATE routePoint SET backpointer='$backpointer' WHERE [:il
routePointID="'$IDwanted'";

}

?>

The next situation we must conside is the user adding a new sequence of stations before an existing section

of route, for example:

of

Manor House

== Seven
Sisters

~
7
e
Hill
Stoke
Newington
Road

Rectory

Tottenham Blackhorse
Hale == Road
Walthamstow
A %~ Central
Walthamstow
Queen's Road Leyton

Clantan

"t James Street Leytor
. High

]
Midland Road
" ———

435

Web-based programming projects

The combined linked list will begin with the new section from Walthamstow to Seven Sisters, where it
connects to an existing station sequence. Pointer and backpointer values will be adjusted to connect the
two groups of route points.

AN routePointlD | stationlD | pointer | backpointer
23 1 12 -1 2
2 23 1 3
6 3 5] 2 4
19 4 15 3 5
. E—h 5 g 4 (31) —j
O 20 — 31 20 (5) 32 -«
O 5 32 3 31 33
33 11 32 -1
L] O 11

It is essential that the new and existing linked list sequences run in the same direction along the
underground line. In this example, the existing route points from Highbury to Seven Sisters would need to
be reversed before the new linked section from Walthmstow is added.

Seven Tottenham Blackhorse
Sisters Hale Road

O O O Walihamstow

< Central
|

Manor House O

Highbury and

Islington O

Stratford
9 Hackney Intermational
Canonbury Central
Dalston Junciion Homearton

Go to updateConnections.php and add another else... condition as shown. Save the file.

$startRoutePointID=$result[0];

$finishRoutePointID=$result[1];

if (($startRoutePointID>0)&&($finishRoutePointID==0))
linkAfter($linkCount, $linkArray,$startRoutePointID,$1ineID);

else
if (($startRoutePointID==0)&&($finishRoutePointID>0))
linkBefore($linkCount,$linkArray, $finishRoutePointID,$1ineID);

else

if (($startRoutePointID==0)8&&($finishRoutePointID==0))
addLinks($1lineID, $1linkArray);

echo"<form method=post action='addRoutes.php'>";

Go now to the RoutePoint.php class file and add a reverseBacksequence() method. This method can work
backwards from the end of an existing linked list by following backpointers. The pointer and backpointer
values are swapped as it moves along the list, so that the final sequence is reversed.

436

Chapter 7: London Underground

public static function reverseBacksequence($finishRouteID)
{
$pointCount = RoutePoint::loadPoints();
$current = $finishRoutelD;
while($current>-1)
{
for($i=1;%i<=$pointCount;$i++)
{
if (RoutePoint::$pointObj[$i]->routePointID == $current)
{
$pointer = RoutePoint::$pointObj[$i]->pointer;
$backpointer = RoutePoint::$pointObj[$i]->backpointer;
RoutePoint: :updatePointer($current, $backpointer);
RoutePoint: :updateBackpointer($current,$pointer);
$current = $backpointer;
break;

~

Save RoutePoint.php and copy it to the server.

Return to the updateConnections.php file and add the linkBefore() method shown below.

function linkBefore($linkCount,$linkArray,$finishRouteID,$1inelID)
{
echo"
New addition goes first, then existing segment";
$pointer = RoutePoint::getPointerFromRoutePoint($finishRoutelID);
if ($pointer == '-1")
{
echo"
current sequence must be reversed";
RoutePoint::reverseBacksequence($finishRoutelID);
}
else
echo"
current sequence correct”;
$linkCount= count($linkArray) - 1;
for ($i=0;$%$i<$1linkCount-1;%$i++)
{
$stationID=$1linkArray[$i];
$pointer=-1;
$backpointer=-1;
if ($i>e)
$backpointer=$previous;
$position=0;

$pointer,$backpointer,$position);
RoutePoint: :updatePointer($previous, $routePointID);
$previous=$routePointlID;
}
RoutePoint: :updatePointer($previous,$finishRoutelD);
RoutePoint: :updateBackpointer($finishRoutelD, $previous);

$routePointID = RoutePoint::addRoutePoint($lineID, $stationlID, E:il

437

Web-based programming projects

Save updateConnections.php and copy it to the server. Run the website and enter a section of the Victoria
line, starting at Highbury & Islington, and ending at Seven Sisters. Please note when entering station names
that the ‘&’ symbol is a control character and can cause a problem. The station name should be entered as
‘Highbury and Islington’ with & replaced by ‘and’.

Return to the 'Add link to route' page and insert a station sequence from Walthamstow to Seven Sisters.
Go to the 'View user map' page and use the 'Check linkages' option to check that the stations along the
Victoria line are correctly connected as a single linked list.

Seven Toltenham Elackhorse
Sicters Hale Road
Manor House O i) VValthamstow
Ceniral
Arsend)
Finsbury
ad Park
O U
Highbury and
Islington O
Stratfrrel

One further possibility when entering a route is that two existing station sequences need to be connected,
as in this example for the Bakerloo line:

N J
Queen’s Park O St Johr's Waod
Kilbumn Park Faddington Edgwars Road - Marylebone Baker Great Poriland
\iaida Val {5y &) Streat Sireet
alua Ve wanwick O O O @]
Avenue o '
Edgurare Warren 3
Royal Oak Road Regani's Park
Westhourne Park
) Ladbroke Grove O Bayswater Eond Crxetord
—~ o Street Circus

The combined linked list will be created by adding route points for the new intermediate stations Edgware
Road and Marylebone, then adjusting the pointers and backpointers to connect with the two existing route
sections.

AN 12
routeFointlD | stationlD | pointer | backpointer
23 1 12 -1 2 FINISH
c 2 23 1 3
3 6 2 4
19 4 15 3 5
& L » 5 2 4 (43)
20
O 31 14 (44) 32 -
O 7 32 15 31 33
14 33 3 32 -1 START
15 43 20 (5) 44 -
| . 44 7 43 @

Begin by going to the updateConnections.php and add another else... condition as shown below.

438

Chapter 7: London Underground

if (($startRoutePointID>0)&&($finishRoutePointID==0))
linkAfter($linkCount,$linkArray, $startRoutePointID,$1lineID);

else

if (($startRoutePointID==0)&&($finishRoutePointID>0))
linkBefore($linkCount,$linkArray,$finishRoutePointID,$1linelID);

else
if (($startRoutePointID>0)&&($finishRoutePointID>0))
linkBetween($linkCount,$linkArray,$startRoutePointID,$finishRoutePointID,$1ineID);

else
if (($startRoutePointID==0)&&($finishRoutePointID==0))

Move to the end of the updateConnections.php file and add the linkBetween() function. This will add any
new intermediate route points and adjust the pointer and backpointer values to connect with the existing

route sections.

function linkBetween($linkCount,$linkArray,$startRoutelID,$finishRoutelID,$1inelID)
{

echo"
New addition goes between two existing segments”;
$pointer = RoutePoint::getPointerFromRoutePoint($startRoutelD);

if ($pointer == '-1")

echo"
current sequence before correct”;
else
{

echo"
current sequence before must be reversed";
RoutePoint: :reverseSequence($startRoutelID);

}

$pointer = RoutePoint::getPointerFromRoutePoint($finishRoutelD);

if ($pointer == '-1")

{
echo"
current sequence after must be reversed";
RoutePoint::reverseBacksequence($finishRoutelID);

}

else

echo"
current sequence after correct”;
$linkCount= count($linkArray) - 1;
$previous = $startRoutelD;
if ($linkCount>2)

for ($i=1;%i<($1linkCount-1);%i++)

{
$stationID=$1linkArray[$i];
$pointer=-1;
$backpointer=$previous;
$position=0;
$routePointID = RoutePoint::addRoutePoint($lineID,$stationID, E:il

$pointer,$backpointer,$position);

RoutePoint: :updatePointer($previous, $routePointID);
$previous=$routePointID;

}

}

RoutePoint::updatePointer($previous,$finishRouteID);
RoutePoint: :updateBackpointer($finishRoutelD, $previous);

Save updateConnections.php and copy it to the server.

439

Web-based programming projects

Run the website and check that two sections of a route can be entered separately and then linked. Use the

test function to check that the sequence of stations is shown correctly. Numbering of route points should
run continuously through the connecting section.

Before leaving the 'Add link to route' page, it would be useful to add an option to delete links from the
map. This may be necessary if an error is made during data entry.

Open the addRoutes.php file. Add lines of code to the setup() function to produce a 'remove link' button.

button = createButton('clear');
button.position(1200, 200);
button.mousePressed(clearLinks);

button = createButton('remove link');
button.position(1100, 240);
button.mousePressed(removelLink);

}

function draw()

Add a function removelink() at the end of the <script> block. This function will be activated when the
button is clicked, and will load the updateConnections.php file. The station IDs indicating the link to be
deleted will be transferred as the variable linkString. Save the addRoutes.php file and copy it to the server.

4 function removelLink() A
{
result = confirm('Remove this link for the '+lineWanted+' line');
if (result==true)
{
window.location = "updateConnections.php?remove=YES&lineName=" E:il
+sel.value()+"&1linkString="+1inkString;
}
}
- J
</script>
</body>
</html>

Save the addRoutes.php file and copy it to the server. Run the 'Add link to route' page and check that the
'remove link' button appears to the right of the map.

/ l Bakerloo v
— Bakerloo
[addlinks | [clear |
remove link

Go now to the updateConnections.php file and add lines of program to the PHP section near the start of

the file as shown. A bracket pair for the else... condition must be created around a block of program code,
as shown below.

440

Chapter 7: London Underground

for ($i=0;%$i<$linkCount;$i++)
{

}

$routePointCount=RoutePoint::loadPoints();

$remove=$_REQUEST['remove'];
if ($remove=="YES")

echo"
".$linkArray[$i];

{
removelLink($1linkArray,$1lineID,$1inkCount, $routePointCount);
}
else
{

$result = checkConnections($1lineID,$linkArray,$linkCount,$routePointCount);

else
if (($startRoutePointID==0)&&($finishRoutePointID==0))
addLinks($1lineID, $1linkArray);

@)

echo"<form method=post action='addRoutes.php'>";
echo"<p><input type=submit value='continue'>";

A function removelink() will remove the connection between two stations, splitting a single linked list into
two separate lists. This is done by resetting pointer and backpointer values to -1. For example:

12 routePointlD | stationlD | pointer | backpointer
23 1 12 2 -1
2 23 3 1
6 3 5] 4 2
19 4 15 5 3
5 3 -1 4
]
12
routePointlD | stationlD | pointer | backpointer
23 1 12 2 -1
2 23 3 1
° 3 6 =D 2
8 19 4 19 5 (1)
5 3 -1 4
]

Open the RoutePoint.php class file and add two small methods which will be needed during the deletion of
a link, as shown in the boxes below.

4 public static function getBackpointerFromRoutePoint($routePoint))
{
$pointer=0;
$pointCount = RoutePoint::loadPoints();
for($i=1;%i<=$pointCount;$i++)
{
if (RoutePoint::$pointObj[$i]->routePointID == $routePoint)
$pointer = RoutePoint::$pointObj[$i]->backpointer;
}
return $pointer;
N J
}
?>

441

Web-based programming projects

4)
public static function deleteRoutePoint($routePointID)
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!'$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query = "DELETE FROM routePoint WHERE routePointID = '$routePointID'";
$result=mysqli_query($conn, $query);
mysqli_close($conn);

}

?>

Save the RoutePoint.php file and copy it to the server.

Return to updateConnections.php and add a function checkConnections2() at the end of the file.

(" function checkConnections2($1ineID,$linkArray,$linkCount,$routePointCount) A
{
$startID =$linkArray[0];
$finishID =$linkArray[1];
$startRouteID = 0;
$finishRouteID = 0;
for ($j=1;%j<=$routePointCount;$j++)
{
if(RoutePoint: :$pointObj[$j]->1ineID == $1ineID)
{
if(RoutePoint::$pointObj[$j]->stationID == $startID)
$startRouteID=RoutePoint: :$pointObj[$j]->routePointID;
if(RoutePoint::$pointObj[$j]->stationID == $finishID)
$finishRouteID=RoutePoint: :$pointObj[$j]->routePointlID;
}
}
return array($startRoutelID,$finishRoutelD);
\ J
?>

Finally, add the removelink() function at the end of the updateConnections.php file as shown on the next
page. The function handles the additional possibility of a link being removed from the beginning or end of
a station sequence. In this case, the linked list is simply shortened by removing the end record, rather than
splitting the list into two.

Save the updateConnections.php file and copy it to the server. Run the website and go to the 'Add link to
route' page. Links are removed one at a time. Select two adjacent stations on a route section as in the
example below. Select the corresponding underground line from the drop-down list, then click the 'remove
link' button. Check that the selected link has now been removed from the route.

o =
pe Lanes South Tottenham
Tottenh Blackh e X
ottenham ckhorse
e vaven Hale = Road
Fe = Walth — i
Central Victoria
| Stamford 191,228,
Hill Walthamstow
e = Queen's Road Leyton Seven Tottenham Blackhorse
) Sisters Hale Rozad
nor House (7)

HH) Walthamstow
Central

Finsbury
Park

442

Chapter 7: London Underground

-
function removelLink($linkArray,$lineID,$linkCount,$routePointCount)
{
$startStationID=$1linkArray[0];
$finishStationID=$1linkArray[1];

$startRouteID=%$result[0];

$finishRouteID=$result[1];

$pointerS = RoutePoint::getPointerFromRoutePoint($startRoutelD);
$backpointerS = RoutePoint::getBackpointerFromRoutePoint($startRoutelD);
$pointerF = RoutePoint::getPointerFromRoutePoint($finishRoutelID);

if($backpointerS==$finishRouteID)

if ($pointerS== -1)
RoutePoint: :deleteRoutePoint($startRouteID);
else
RoutePoint: :updateBackpointer($startRouteID, '-1");
if ($backpointerF== -1)
RoutePoint::deleteRoutePoint($finishRoutelID);
else
RoutePoint: :updatePointer($finishRoutelID,"'-1");

$result = checkConnections2($1lineID,$1linkArray,$linkCount, $routePointCount);

$backpointerF = RoutePoint::getBackpointerFromRoutePoint($finishRoutelID);

}
else
if($pointerS==$finishRoutelD)
{
if ($backpointerS== -1)
RoutePoint::deleteRoutePoint($startRouteID);
else
RoutePoint: :updatePointer($startRoutelD, '-1");
if ($pointerF== -1)
RoutePoint::deleteRoutePoint($finishRoutelD);
else
RoutePoint: :updateBackpointer($finishRoutelD, '-1");
}
9 }
?>

This completes the entry procedure for simple underground lines which run along an unshared route. We

must, however, allow for the entry of parallel underground lines running between pairs of stations. For

example, the Bakerloo, Circle and Hammersmith and City lines share the route between Baker Street and

Moorgate:

arylebone ==

&
Baker GreatPortland Euston (& =) 7,
A e o 7 a

Euston
Square

Farringdon
=

Russell

Square Barbican

== Moorgate

A strategy is to create a table of all existing links between route points along with the linelD of the
underground line forming the link, as in the example below. When a new route segment is to be added,

the number of underground lines already passing between pairs of stations can be counted.

443

Web-based programming projects

route point ID 27 28 33 34
e e e e e Central line linelD 2
route link from to linelD
1 27 28 2
2 28 33 2
3 33 34 2

Go to the end of the updateConnections.php file and add a function to create the table as a two-
dimensional array with the name SrouteLink.

function makeLinkArray($lineCount,$routePointCount)
{
$oldStationID=0;
$1linkCount=0;
$routeLink = array();
$routeLink[] = array();
for ($i=1;%$i<=%$lineCount;$i++)
{
$currentLineID=Line::$1ineObj[$i]->1inelD;
for ($j=1;%$j<=$routePointCount;$j++)
if ((RoutePoint::$pointObj[$j]->backpointer==-1)8&&
(RoutePoint: :$pointObj[$j]->1ineID==$currentLineID))
{
$currentPointer=RoutePoint: :$pointObj[$j]->pointer;
$stationIDwanted=RoutePoint: :$pointObj[$j]->stationID;
$oldStationID=$stationIDwanted;
$o0ldRoutePoint=%$7j;
$finished=false;
while($finished==false)
{
for ($n=1;$n<=$routePointCount;$n++)
{
if (RoutePoint::$pointObj[$n]->routePointID==$currentPointer)
$pos=$n;
}
$newPointer=RoutePoint: :$pointObj[$pos]->pointer;
$stationIDwanted=RoutePoint: :$pointObj[$pos]->stationID;
$newRoutePoint=$pos;
if ($currentPointer<o)
$finished=true;
else
{
$linkCount++;
$routeLink[$1linkCount][@]= $o0ldStationID;
$routeLink[$1linkCount][1]= $stationIDwanted;
$routeLink[$1linkCount][2]= $currentLinelD;
$currentPointer=$newPointer;
$oldStationID=$stationIDwanted;
$oldRoutePoint=$newRoutePoint;
}
}
}
}
}
return $routelLink;

444

Chapter 7: London Underground

The function checks the linked lists for each of the existing route sequences, and adds each pair of route
points as a new row in the array, along with the ID value for the underground line connecting them.

Continuing to work in the updateConnections.php file, add the function checkMultiple() as shown.

4 N
function checkMultiple($previousStationID, $stationID,
$nextStationID, $routeLink,$1ineID)
{
$position = 0;
$arrayCount=0;
$lineArray = array();
$a = $stationID;
for ($h=1;%$h<count($routeLink);$h++)
{
$b = $nextStationID;
if ($b<1)
$b = $previousStationID;
if ((($routeLink[$h][@]==%$a)&&($routeLink[$h][1]==$b)) || E:jl
(($routeLink[$h][0]==$b)&&($routeLink[$h][1]==%a)))
{
$currentLine=$routeLink[$h][2];
$found=false;
for ($p=0;$p<$arrayCount;$p++)
{
if ($lineArray[$p]==$currentLine)
$found=true;
}
if ($found==false)
{
$lineArray[$arrayCount]=$currentlLine;
$arrayCount++;
}
}
$position=count($lineArray);
}
return $position;
}
- J

The function will be called before each new underground line link between pairs of stations is added to the
map. The function accesses the SrouteLink array and returns a variable Sposition, which is the number of
existing links between the pair of station points. For example:

Sposition = 0 1 2 2 2 1

O O o0 0 O

The $position value will then be stored in the routePoint record, along with the linelD for the underground

line to be added. This value can then be used to offset the new line on the map if necessary, so that any
existing lines are not obscurred.

Add lines of program code near the start of updateConnections.php to create the SrouteLink array, extend
the array to two dimensions, then call the makeLinkArray() function.

445

Web-based programming projects

for ($i=0;%$i<$linkCount;$i++)
{

}

$routePointCount=RoutePoint: :loadPoints();

echo"
".$linkArray[$i];

$lineCount=Line: :loadLines();

$routeLink = array();

$routeLink[] = array();

$routeLink = makeLinkArray($lineCount, $routePointCount);

$remove=$_ REQUEST['remove'];
if ($remove=="'YES')

Let us consider the case of entering a new line segment which is not connected to any existing section of
the same underground line. Locate the addLinks() function in the updateConnections.php file. Replace
this with a new version of the function as shown below:

function addLinks($1ineID,$linkArray, $routeLink))
{
$1linkCount= count($linkArray);
for ($i=0;%$i<($1linkCount-1);%$i++)
{
$previousStationID=90;
if ($i>0)
$previousStationID=$linkArray[$i-1];
$stationID=$1linkArray[$i];
$nextStationID=$linkArray[$i+1];
$position = checkMultiple($previousStationID,$stationID, E:il
$nextStationID, $routeLink,$1ineID);
$pointer=-1;
$backpointer=-1;
if ($i>0)
$backpointer=$previous;
$routePointID = RoutePoint::addRoutePoint($lineID,$stationID,
$pointer, $backpointer,$position);
if ($i>0)
RoutePoint: :updatePointer($previous, $routePointID);
$previous=$routePointID;

}
- J

Go to the section near the start of the updateConnections.php file and make a change to the line where
the addLinks() function is called. Add the $routeLink array as another input parameter.

else
if (($startRoutePointID>0)&&($finishRoutePointID>0))
linkBetween($1linkCount, $linkArray, $startRoutePointID,$finishRoutePointID,$1inelD);

else
if (($startRoutePointID==0)&&($finishRoutePointID==0))

(: addLinks($1inelID, $1linkArray,$routelLink); :)
}

echo"<form method=post action='addRoutes.php'>";
echo"<p><input type=submit value='continue'>";
echo"</form>";

446

Chapter 7: London Underground

Save updateConnections.php and copy it to the server. Run the website and go to the 'Add link to route'
page. Select a point on the map where two different underground lines run alonside each other, such as
the Piccadilly and Metropolitan lines between Uxbridge and Rayners Lane:

== West Ruislip () Nerthwood

MNerthweod H
Hillingdon Rusislip

2
Uxbridge lekenham

Pinner

Ruislip Manor

Eastcote

Rayners Lane

West

Ruislip Gardens =
uislip Garden Harrow

Enter one of the lines, followed by the other. Go to the PHP MyAdmin web page and examine the
routePoint table. Points along the first line entered should have a position value of 0, while the points
along the second line should have a position value of 1.

routePointlD linelD stationlD pointer backpointer position
399 15 408 400 398 0
400 15 404 401 399 0
401 15 405 402 400 0
402 15 382 -1 401 0
403 10 133 404 -1 1
404 10 404 405 403 1
405 10 405 406 404 1
406 10 382 407 405 1

When the second underground line is added to the map display, it should be offset to avoid being drawn on
top of the first line. The necessary offset can be calculated using trigonometry. Suppose that a line
connecting two stations is to be drawn from the point (x1,y1) to the point (x2,y2). The angle © which this
line makes with the horizontal can be found using an arc tangent function, as in the diagram below.

(x1,y1)

w o/
6_ dv = w sin(©)
0c(8) |

dx=-w tos{e) ;

9 = atn (y/x)
y=y2-yl

(x2,y2)

Xx=x2—x1

For the new underground line to be shown running alongside an existing line, a small offset at 90° to the
route should be applied. The offset will be at the same angle 6, but this time in relation to the vertical. For
an offset distance of w, the horizontal dx and vertical dy components can be found using cosine and sine
functions.

Open the mapFunctions.php file and add two small functions to calculate the x and y offset values as
shown below.

447

Web-based programming projects

4 function xOffset(x1,yl,x2,y2)

{
x=int(x2-x1);
y=int(y2-y1);
a = Math.atan(y/x);
dx= 6 * Math.cos(HALF_PI+a);
return dx;

}

function yOffset(x1l,yl,x2,y2)
{
X=x2-X1;
y=y2-y1;
a = Math.atan(y/x);
dy= 6 * Math.sin(HALF_PI+a);
return dy;
}
. J

Update the plotLines2() function by adding or replacing the lines of program code indicated below and on
the following page.

function plotLines2()

{
var x1=0;
var yl=0;
var x2=0;
var y2=0;
for (i=1;i<=lineCount;i++)
{
stroke(255);
fill(e);
currentLineID=1ineObj[i].1linelID;
colourCode=1ineObj[i].colourCode;
solid=1ineObj[i].solid;
let ¢ = split(colourCode, ',");
r=int(c[@]); g=int(c[1]); b=int(c[2]);
fill(r,g,b);
stroke(r,g,b);
for (j=1;7j<=pointCount;j++)
if ((pointObj[j].backpointer==-1)&&(pointObj[j].lineID==currentLinelID))
{
currentPointer=pointObj[j].pointer;
stationIDwanted=pointObj[j].stationID;
(: positionWanted=pointObj[j].position; :)

finished=false;
oldX=getXfromID(stationIDwanted);
oldy=getYfromID(stationIDwanted);
oldX = int(oldX-transH);
oldY = int(oldY-transV);
finished=false;
count=0;
while(finished==false)
{

for (n=1;n<=pointCount;n++)

{

if (pointObj[n].routePointID==currentPointer)

448

Chapter 7: London Underground

pos=n;

}

newPointer=pointObj[pos].pointer;
stationIDwanted=pointObj[pos].stationID;

newPositionWanted=pointObj[pos].position;

xpos=getXfromID(stationIDwanted);
ypos=getYfromID(stationIDwanted);
xpos = int(xpos-transH);
ypos = int(ypos-transV);

X1=Xxpos;

yl=ypos;

x2=01dX;

y2=0ldY;

if (positionWanted>=1)

{
dx=x0ffset(x1,yl,x2,y2);
dy=yOffset(x1,yl,x2,y2);
if (dy<4)

if ((dx>-8)&&(dx<0))
dx = -dx;
¥

if(positionWanted==2)
{

dx= -dx;

dy= -dy;
}
x1=int(xpos+dx);
yl=int(ypos+dy);
x2=int(oldX+dx);
y2=int(oldY+dy);

}

J

strokeWeight(6);
stroke(r,g,b);

line(x1,y1,x2,y2);

REPLACE)

if(solid==false)

{
strokeWeight(4);
stroke(255);

line(x1,y1,x2,y2);

REPLACE)

strokeWeight(1);
oldX=xpos;

oldY=ypos;

if (currentPointer<o)

{
}

currentPointer=newPointer;

finished=true;

positionWanted=newPositionWanted;

449

Web-based programming projects

Save the mapFunctions.php file and copy it to the server. Run the web page, selecting the 'View user map'
option. The two underground lines should be shown running alongside one another without overlapping.

Northwood
West Ruislip

Northwood Hills

Hillingdon Ruislip

Pinner
Morth Harrow

Ruislip Manor

Uxbridge lckenham

Eastcote

Rayners Lane
Ruislip Gardens West

Harrow

We can now update the functions which allow sections of line to be input before, after or between exisiting
sections of the same underground line. This will allow the user more flexibility when entering long sections
of track which run alongside other lines for parts of their route.

Return to the updateConnections.php file and change other function calls to include the SrouteLink array
as shown:

$startRoutePointID=$result[0];
$finishRoutePointID=$result[1];
if (($startRoutePointID>0)&&($finishRoutePointID==0))

(: linkAfter($linkCount,$linkArray, $startRoutePointID,$1ineID, $routelLink);)

else
if (($startRoutePointID==0)&&($finishRoutePointID>0))

(: linkBefore($linkCount,$linkArray,$finishRoutePointID,$1inelID, $routeLink); :)

else
if (($startRoutePointID>0)&&($finishRoutePointID>0))

linkBetween($linkCount,$linkArray,$startRoutePointID, E:il
$finishRoutePointID,$1inelID, $routeLink);

else
if (($startRoutePointID==0)&&($finishRoutePointID==0))
addLinks($1ineID, $1inkArray,$routeLink);
}

echo"<form method=post action='addRoutes.php'>";
echo"<p><input type=submit value='continue'>";
echo"</form>";

Locate the linkAfter() function. Alter the heading line.

(:function linkAfter($linkCount,$linkArray, $startRouteID,$1inelD, $routelLink) :)
{

echo"
Existing segment goes first, then new addition";
$pointer = RoutePoint::getPointerFromRoutePoint($startRoutelD);
if ($pointer == '-1")

echo"
current sequence correct”;

Add or alter the lines of the linkAfter() function indicated below.

450

Chapter 7: London Underground

$linkCount= count($linkArray) - 1;
$previous = $startRoutelD;
for ($i=1;%$i<$linkCount;$i++)

{
$previousStationID=0;
if ($i>1)
$previousStationID=$linkArray[$i-1];
$stationID=$1linkArray[$i];
(: $nextStationID=$linkArray[$i+1]; :)
$pointer=-1;
$backpointer=$previous;
$position = checkMultiple($previousStationID,$stationID, E:il
$nextStationID,$routeLink,$1ineID);
$routePointID = RoutePoint::addRoutePoint($1lineID,$stationID,
$pointer,$backpointer,$position);
RoutePoint: :updatePointer($previous, $routePointID);
$previous=$routePointlID;
}

Save the updateConnections.php file and copy it to the server. Run the web page, selecting the 'Add link to

route' option. Choose a section of the map where two or three underground lines are shown running
alongside one another. Enter one line, followed by the first section of a second line. Check that the
remaining section of line can then be entered and displayed correctly. For example:

pucester ucesiar
Road St James's Road St James's
Victoria () Park: Victoria {1y Park

Westminster

Sloane
Square

South
Kensington

Sloane
Square

South
Kensington

Return to updateConnections.php and update the linkBefore() function in a similar way by adding or
altering the lines indicated in the two boxes below:

)

(: function linkBefore($linkCount,$linkArray,$finishRouteID,$1ineID,$routelLink)
{

echo"
New addition goes first, then existing segment";
$pointer = RoutePoint::getPointerFromRoutePoint($finishRoutelID);

$linkCount= count($linkArray) - 1;
for ($i=0;%$i<$linkCount-1;%$i++)
{

$previousStationID=0;
if ($i>0)
$previousStationID=$linkArray[$i-1];

$stationID=$1linkArray[$i];

$nextStationID=$1linkArray[$i+1];

$pointer=-1;
$backpointer=-1;

451

Web-based programming projects

if ($i>e)
$backpointer=$previous;
$position = checkMultiple($previousStationID,$stationID, E:il
$nextStationID,$routeLink,$1lineID);

$routePointID = RoutePoint::addRoutePoint($lineID, $stationID,
$pointer, $backpointer,$position);
RoutePoint: :updatePointer($previous, $routePointID);
$previous=$routePointID;
}
RoutePoint: :updatePointer($previous,$finishRoutelD);
RoutePoint: :updateBackpointer($finishRoutelD, $previous);

}

Save the updateConnections.php file and copy it to the server. Run the web page, selecting the 'Add link to
route' option. Select a point where multiple lines run in parallel. Enter one line, followed by a section of a
second line. Check that another group of stations can be added before this, for example:

Marylebone Baker GreatPortiand Euston (O arylebone Baker GreatPortland Euston ()
qh Street Street O {H Street Street O
O O O - O O '®)
Euston E
Warren Street uston
\ Square < S
Y quare

Finally, update the linkBetween() function by adding or altering program lines as indicated below:

function 1linkBetween($linkCount,$linkArray,$startRoutelD, [:il
$finishRouteID,$1inelID, $routelLink)

{

echo"
New addition goes between two existing segments";
$pointer = RoutePoint::getPointerFromRoutePoint($startRoutelD);

$1linkCount= count($linkArray) - 1;
$previous = $startRoutelD;
if ($linkCount>2)
{
for ($i=1;%$i<($linkCount-1);%i++)
{

$previousStationID=0;
if ($i>1)
$previousStationID=$linkArray[$i-1];

$stationID=$1linkArray[$i];
(: $nextStationID=$linkArray[$i+1]; :)

$pointer=-1;
$backpointer=$previous;

$position = checkMultiple($previousStationID,$stationID,
$nextStationID,$routeLink,$1inelID);

$routePointID = RoutePoint::addRoutePoint($lineID,$stationID,
$pointer, $backpointer,$position);
RoutePoint: :updatePointer($previous, $routePointID);
$previous=$routePointID;
}
}

RoutePoint::updatePointer($previous,$finishRoutelID);

452

Chapter 7: London Underground

Save the updateConnections.php file and copy it to the server. Run the web page, selecting the 'Add link to

route' option. Multiple lines can now be entered, with sections added and joined to form complete

underground routes. You may wish to make backups of the routePoint table at intervals, using the export
option in the database. This will allow the data to be restored if a problem occurs as you build up the map.

Edgware Road Marylebone \Baker
—-CF—:“ Street

Edgwara
Road

Euston () Old Street
Square

Farmingdon

Russell
Square

® Goodge

Shreef Barbican

Bayswater Bond
Street

Orford
Circus

Moorgate
Chancery Lane

Marble Arch

Tottenham Helbom

Court Road

Motting

Hil Gate Bankg

This completes the data entry for the London Underground route planning application. We can now move
on to create the public web pages. Open a blank file and add the program code shown below. Save the file

as index.php and copy it to the server.

<html>
<head>
<title>London Underground route planning</title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
<script src="p5.js"></script>
<script src="p5.dom.js"></script>
</head>
<body>

<script type="text/javascript">
function setup()

{
createCanvas (1000, 654);
}

function draw()

{
background(255);
}
</script>
</body>
</html>

Run the website. The index.php page will be loaded by default if no other file name is specified. A white

rectangular window should appear on the page, ready for the addition of the underground map.

Open the styleSheet.css file and add formatting commands for a lineTable2 division. Save the file and copy

it to the server.

// div.lineTable2 {

position: absolute;

top: 700px;

left: 100px;

width: 800px;
background-color: white;

~

453

Web-based programming projects

It will be convenient to display a key beneath the map listing the lines and showing their colour codes.
Open the Line.php class file and add the linelist2() method shown below. Save the file and copy it to the
server.

public static function linelist2($lineCount) A
{
echo"<div class='lineTable2'>";
echo"<table border=0>";
for ($i=1;%$i<=%$lineCount; $i++)
{
$lineName=Line::$1ineObj[$i]->1ineName;
$colourCode=Line::$1ine0Obj[$i]->colourCode;
$solid=Line: :$1ineObj[$i]->so0lid;
if ($i%2==1)
echo" <tr height=5px >";
echo" <td width=160px>";
if ($solid==true)
{
echo"<hr size='8"' style='background-color:rgb(".$colourCode.");"'></td>";
}
else
{
echo"<hr style='height: 4px; border: 1px [:il
solid rgb(".$colourCode."); " '></td>";
}
echo" <td width=60></td>";
echo" <td width=260 style='font-size: 14px;'>".$lineName."</td>";
echo" <td width=120></td>";
}
echo"</table>";
echo"</div>";
}
- /

Return to index.php. Add lines of PHP code at the start of the file to load and display the list of
underground lines.

<?
include('Line.php');
$lineCount=Line::loadLines();
Line::linelist2($1lineCount);
?>

<html>
<head>
<title>London Underground route planning</title>

Save index.php and copy it to the server. Run the web site and check that the key is displayed at the
bottom of the page, as shown in the example below. It may be necessary to hold down the CTRL key whilst
reloading the page, so that the style sheet is updated.

454

Chapter 7: London Underground

| Bakerloo E— Central
e Circle —— District
— DLR e Hammersmith and City
e Jubilee —————— London Overground
———— London Trams Matropolitan
— Northern E—— Piccadilly
S Victoria |[— Waterloo and City

The next step is to display the route map in a scrolling window. Return to index.php and add lines of code
to the PHP section at the start of the file.

<?
include('Line.php');
$lineCount=Line::loadlLines();
Line::1linelist2($lineCount);

$Hscroll=$ REQUEST['Hscroll'];
$Vscroll=$ REQUEST['Vscroll'];
include('mapFunctions.php');

?>
<html>
<head>
<title>London Underground route planning</title>

Move down to the <script> block and add lines of code as shown below. The program makes use of
functions which we wrote earlier to display the underground lines and station symbols, and to add
horizontal and vertical scroll bars to the map window.

<script type="text/javascript">

var VscrollPosition=300;

var HscrollPosition=400;

Hscroll = <? echo json_encode($Hscroll); ?>;
Vscroll = <? echo json_encode($Vscroll); ?>;
var Hscroll=false;

var Vscroll=false;

function setup()

{

if ((Hscroll»@)||(Vscroll>e))
{

VscrollPosition=Vscroll;
HscrollPosition=Hscroll;

}
createCanvas (1000, 654);

}

Add lines of program code to the draw() method as shown below.

455

Web-based programming projects

function draw()

{

transV = map(VscrollPosition, @, (height-14), @, 1890-height);
transH = map(HscrollPosition, 0, (width-14), @, 2560-width);

push();
translate(-transH, -transV);

background(255);

4 pop(); I
plotLines2();
displayNames();
displayStations(225,225,225,"NO0");
Hscrollbar(HscrollPosition);
Vscrollbar(VscrollPosition);
X=mouseX;
y=mouseY;

\\7 scrollMove(); Y,
}

</script>

It will be necessary to load the PHP objects representing underground lines, stations and route points, and
convert these to equivalent JavaScript objects. Begin by inserting lines of PHP code near the beginning of
the index.php file, as shown below.

$Hscroll=$ REQUEST['Hscroll'];
$Vscroll=$ REQUEST['Vscroll'];
include('mapFunctions.php');

include ('Stations.php');
$stationCount=Stations::loadStations();
include('RoutePoint.php');
$pointCount=RoutePoint::loadPoints();

?>
<html>
<head>
<title>London Underground route planning</title>

Go now to the <script> block and insert lines of code to convert data to JavaScript objects and variables by
means of JSON encoding.

var HscrollPosition=400;

Hscroll = <? echo json_encode($Hscroll); ?>;
Vscroll = <? echo json_encode($Vscroll); ?>;
var Hscroll=false;

var Vscroll=false;

stationObj = <? echo json_encode(Stations::$stationObj); ?>;)
stationCount = <? echo json_encode($stationCount); ?>;

stationList = <? echo json_encode($stationList); ?>;

listCount = <? echo json_encode($listCount); ?>;

lineObj = <? echo json_encode(Line::$1ineObj); ?>;

lineCount = <? echo json_encode($lineCount); ?>;

pointObj = <? echo json_encode(RoutePoint::$pointObj); ?>;

_ pointCount = <? echo json_encode($pointCount); ?>;)

function setup()

{

456

Chapter 7: London Underground

Save the index.php file and copy it to the server. Run the web page and check that the route map entered
earlier is visible and can be scrolled in the screen window.

T

"“l'UCIU Lane LELESIET SUdT=
:) \ Piccadilly Cannon Street
Efgﬁ%ﬂ:ﬁiﬁ - Circus Ehanng
[Fh) e i I
i) % Mansion House
idhawk Road

Barons

Blackfrars
Hammersmith) Court

StJames’s
Park

Temple

Ravenscourt West

Westminster
Park Kensington

EarTs South Sloane
Court Kensington Square

Embankment

Waterloo ™y
||

The next step is to add HTML components to the panel on the right of the map to produce a user interface
for the route information system. In preparation for this, open the Stations.php class file and add a

loadStationList() method as shown below. This will create an alphabetical list of station names which can
be used in a drop-down selection box.

\
public static function loadStationList()
{

include ('user.inc');

$conn = new mysqli(localhost, $username, $password, $database);
if (!'$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM stations ORDER BY StationName";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);

mysqli_close($conn);

$i=1;

$count=0;

while ($i <= $num)
{

$row=mysqli_fetch_assoc($result);

$s=$row["StationName"];

$s=str_replace("*"," ",$s);

$s=trim($s);

if (! ($stationList[$count]==$s)&&(strlen($s)>2))

{
$count++;
$stationList[$count]=9$s;
}
$i++;

}

return $stationlList;

\ J

Save the Stations.php file and copy it to the server.

We can make a small improvement to the map display by linking multiple symbols representing the same
underground station, as in the case of King's Cross, Euston and Baker Street in this example.

3§

Old Street

- T TTESTEm R
StJonn s wood ot King's Cross
St Pancras

0

\Baker Great Portland Euston
Street Street

|

Euston |
Square

Warren Street

Regent's Park

Farringdon

/ 457

Web-based programming projects

Open the mapFunctions.php file and locate the displayStations() function. Add the block of program code
below. Save the file and copy it to the server. Run the web page and check that lines are now drawn to
connect the multiple symbols.

if (show==true)
{
fill(r,g,b);
stroke(9);
xpos=int(xCentre)-int(transH);
ypos=int(yCentre)-int(transV);
ellipse(xpos,ypos,14,14);
(position=stationObj[i].position; A
if ((position==0)8&&(midpoints=="NO"))
{
for (j=1;j<=stationCount ;j++)
{
if (1(i==3))
{
stationName2=stationObj[j].stationName;
if (stationName==stationName2)
{
xCentre=stationObj[j].xpos;
yCentre=stationObj[j].ypos;
xpos2=int(xCentre)-int(transH);
ypos2=int(yCentre)-int(transV);
fill(e);
line(xpos,ypos,xpos2,ypos2);
}
}
}
. } J
}
}
}

The next step is to create two drop-down lists showing the underground stations in alphabetical order. This
will allow the user to select the start point and destination for their journey.

Return to the index.php file. Add two further lines of code to the PHP block at the beginning of the file.

include ('Stations.php');
$stationCount=Stations::loadStations();
include('RoutePoint.php');
$pointCount=RoutePoint: :loadPoints();

(: $stationList=Stations::loadStationList(); :)

$listCount =sizeof($stationList);

>

Go to the end of the <script> block in index.php and add a makelLists() function as shown below.

458

Chapter 7: London Underground

4)
function makelLists(listCount,stationlList)
{
selF = createSelect();
selF.position(1050, 80);
selF.size(250, 30);
selF.option(' ');
for (i=1;i<=listCount;i++)

{
}

selT = createSelect();
selT.position(1050, 150);
selT.size(250, 30);
selT.option(' ');

for (i=1;i<=listCount;i++)

selF.option(stationList[i]);

t selT.option(stationList[i]);
}
\J J
</script>

Move now to the setup() function near the start of the <script> block. Add lines of program code to
produce captions for the drop-down list boxes, then call the function to create the lists.

function setup()

if ((Hscroll>@)||(Vscroll>e))
{

VscrollPosition=Vscroll;
HscrollPosition=Hscroll;

}
createCanvas (1000, 654);

captionF = createElement('h3', 'Travelling from');
captionF.position(1050, 40);

captionT = createElement('h3', 'to');
captionT.position(1050, 110);
makeLists(listCount,stationList);

Save the index.php file and copy it to the server. Run the web page and check that stations are listed in the
drop-down selection boxes, as in the example below.

riomingroen

bd Crescant D3

Crozs
ncras

q's
tFa

——L,

Travelling from

to

[TTOTTISTIOnT

Honor Cak Parlk
Hornchurch
oo
Strest Hounslow East
Hounslow YWest
Hoxton

Hyde Fark Corner

Ickenham

|| Imperial Wharf
Island Gardens

Goodge

) Russell
Street B

Square Barbican

Moorgate
Chancery Lane

Toitenham

Helborn
Court Road

Aldga

Covent Garden

9,
Park StPaul's

Leicester Square

|
Cannon Straset
Charing n’

Piccadily
Circus

459

Web-based programming projects

Return to the setup() function in the index.php file. Add lines of program code as shown below to create a
'clear’ button.

captionF = createElement('h3', 'Travelling from');
captionF.position(1050, 49);

captionT = createElement('h3', 'to');
captionT.position(1050, 110);
makelLists(listCount,stationlList);

buttonC = createButton('clear');
buttonC.position(1080, 200);
buttonC.mouseClicked(clearSelection);

Go now to the end of the <script> block and insert a clearSelection() function. This will reset the two
drop-down lists to show blank input boxes.

function clearSelection()
{
selT.remove();
selF.remove();
makeLists(listCount,stationList);
}

Save the index.php file and copy it to the server. Run the web page and select stations from the drop-
down lists, then click the 'clear' button. Check that the input boxes are cleared correctly.

As an alternative to selecting stations from the drop-down lists, the user will be able to select the start and
finish points for their journey by clicking on station symbols on the map. The name of the first station
clicked will be inserted into the 'Travelling from' drop-down list box. The name of the second station
clicked will be inserted into the 'to’ box.

Return to the index.php file. Add the mouseClicked() function below the draw() function in the <script>
block, as shown in the two boxes below.

4)

function mouseClicked()
{
x=mouseX;
y=mouseY;
if((x<960)8&&(y<620))

if ((Vscroll==false)&&(Hscroll==false))
{
for (i=1;i<=stationCount ;i++)
{
xCentre=int(stationObj[i].xpos);
yCentre=int(stationObj[i].ypos);
Xdiff = abs(xCentre-(x+transH));
Ydiff = abs(yCentre-(y+transV));
if ((Xdiff<10)&&(Ydiff<10))
stationID=stationObj[i].stationID;
}
selT.remove();
selF.remove();
makelLists(listCount,stationList);

460

Chapter 7: London Underground

4 for (i=1;i<=stationCount;i++))
{
if (stationObj[i].stationID==stationID)
{
stationName=stationObj[i].stationName;
stationName = stationName.replace('*',"' ');
stationName = trim(stationName);
}
}
if (inputCount==0)
{
fromStation=stationName;
inputCount=1;
for (i=1;i<=1listCount;i++)
{
if (stationList[i]==stationName)
selF.selected(stationList[i]);
}
}
else
{
for (i=1;i<=listCount;i++)
{
if (stationList[i]==stationName)
selT.selected(stationList[i]);
if (stationList[i]==fromStation)
selF.selected(stationList[i]);
}
}
}
) }
- J

MouseClicked() is activated automatically if the user clicks the mouse on the map area. It begins by

obtaining the x and y map coordinates of the mouse pointer, then checks the station objects to find the

name of the station. This is used to select the station name which is displayed in the appropriate drop-
down list box.

We keep track of the entry of the first and second stations by means of a variable 'inputCount’, which

begins with a value of 0 and changes to 1 when the first station is selected on the map. The name of the

first station is stored as a variable 'fromStation'. Go to the start of the <script> block to initialise these.

pointObj = <? echo json_encode(RoutePoint::$pointObj); ?>;
pointCount = <? echo json_encode($pointCount); ?>;

var fromStation="";
var inputCount=0;

function setup()

These variables should also be reset when the 'clear' button is clicked. Go to the clearSelection() function

and add lines of code to do this.

selT.remove();
selF.remove();
makeLists(listCount,stationList);

inputCount=0;
fromStation="";

}

461

Web-based programming projects

Save the index.php file and copy it to the server. Run the web page. Select start and destination stations
by clicking on the map, and check that these appear in the drop-down list boxes. Check also that the clear
button cancels the entries correctly.

Now that the start and destination can be selected, either from the drop-down lists or by clicking on the
map, we can move on to find routes between these stations. We will begin by adding a 'find route' button
and a text area where the route information will be displayed.

Qld Strast to

Farringdon

Busoey Barican

clear find route

Moorgate

Chancery Lans Str

olbom
Bank

[Garden
5t Paul's
are Monument i

Cannon Streat

Mansion House

Blackfriars

Return to the index.php file and locate the setup() function. Add lines of code as shown below to create
the button and text area.

buttonC = createButton('clear');
buttonC.position(1080, 200);
buttonC.mouseClicked(clearSelection);

buttonR = createButton('find route');
buttonR.position(1180, 200);
buttonR.mouseClicked(findRoute);
textArea = createElement('textarea');
textArea.position(1020,260);
textArea.attribute("rows","24");
textArea.attribute("cols","40");

Go to the bottom of the <script> block and add a findRoute() function below clearSelection(). This
function will be called when the 'find route' button is clicked. Save index.php and copy it to the server.

function findRoute()

{
window.location = "findRoute.php?fromStation="+selF.value()
+"&toStation="+selT.value()+"&Hscroll=" +int(HscrollPosition)+
"&Vscroll="+int(VscrollPosition);
}

We will now create a new page which will be loaded when the 'find route' button is clicked. The names of
the start and destination stations will be transferred to this page as part of the URL address. Open a blank
file and add the program code below. Save the file as findRoute.php and copy it to the server.

462

Chapter 7: London Underground

<?
$fromStation=$_ REQUEST['fromStation'];
$toStation=$_REQUEST['toStation'];

?>

<html>

<body>

<?
$message=$fromStation." to ".$toStation;
echo $message;
echo"<form method=post action='index.php?message=".$message.
echo"<p><input type=submit value='continue'>";
echo"</form>";

?>

</body>

</html>

>";

The program creates a text string Smessage which is made up from the names of the start and destination
stations selected earlier. In the completed system, this message will also contain details of routes which
have been found. It is displayed on the page for test purposes.

Leicester Square to Monument

| continue |

The Smessage string is transferred back to the index.php page when the 'continue' button is clicked.

Return to index.php and add lines of code near the start to collect the message text.

include('RoutePoint.php');
$pointCount=RoutePoint: :loadPoints();
$stationList=Stations::loadStationList();
$listCount =sizeof($stationList);

$message=$ REQUEST['message'];
if (!isset($message))

$message=" ";

?>
<html>
<head>

At the start of the <body> section, add a block of css code to set the font for the text area.

<script src="p5.dom.js"></script>
</head>
<body>

<style>
textarea {
font-family: Arial, Helvetica, sans-serif;

}
</style>

<script type="text/javascript">
var VscrollPosition=300;

463

Web-based programming projects

Near the start of the <script> block, add a line of program code to convert the PHP variable $Smessage into
a JavaScript variable as shown below.

var fromStation="";
var inputCount=0;

(message=<? echo json_encode($message); ?>;)

function setup()

{

Go now to the setup() function and add lines of program code to display the message string in the text
area. A slight problem is that the normal HTML
 command for creating a new line of text does not
work in a text area component. This must be replaced with the character sequence "\n\r'.

textArea = createElement('textarea');
textArea.position(1020,260);
textArea.attribute("rows","24");
textArea.attribute("cols","40");

message = message.replace(/
/g, '\n\r');
textArea.html(message);

}

Save the index.php file and copy it to the server.

Run the web page and select a start and destination station, either by means of the drop-down lists or by
clicking the mouse on the map. Click the 'find route' button to go to the findRoute.php page. Check that
the correct station names are displayed.

Click ' continue' to return to index,php. Check that the station names are now shown in the text area, as in

the example below.
Dz
Travelling from

mingron
rescant

King's Cross
StPancras

() Old Straet to

clear find route

Goodge
® Street

()
T Helbom
[
Covent Garden

Leicester Square
. Cannon Straat

Charing

Cross Kansion House

One final task is to add program code to clear the text area along with the drop-down list boxes when the
'clear' button is clicked. Return to the index.php file and locate the clearSelection() function. Add lines of
program code as shown below.

Moorgate
Chancery Lane

Liverpool
Street

Aldga South Kensington to Liverpool Street

St Paul's

464

Chapter 7: London Underground

function clearSelection()
{
selT.remove();
selF.remove();
makelLists(listCount,stationList);
inputCount=0;
fromStation="";
textArea.remove();
textArea = createElement('textarea');
textArea.position(1020,260);
textArea.attribute("rows","24");
textArea.attribute("cols","40");
}

Save the index.php file and copy it to the server. Run the web page, enter stations, then click the 'find
route' button. Click 'continue' to return to the index.php page and display the message string in the text
area. Check that the message text is deleted when the 'clear’ button is clicked.

This completes the design of the user interface. We will now work on the findRoute.php page which will
run the algorithm for finding routes between the start and destination stations.

The strategy for finding routes can be summarised as follows:

e We first search for a connection which does not involve a change of underground line. To do this, it

is necessary to produce a list of stations for each line in turn, and check whether both the
departure and destination points are present in the same list. It may be the case that more than
one line provides a direct connection between stations, as with the District and Circle lines
between South Kensington and Temple:

St James's
Park

Victoria

South Sloane Westminster Embankment

Kensington Soquare

The lists should be made up from station names rather than stationID numbers. This will ensure

that multiple station points with different ID numbers, as at Victoria and Embankment in the above

example, are recognised as the same station.

e If no direct link is found, then we search for journeys involving one change of underground line.
Each line serving the start station is compared with each line serving the destination. If a station is
found which is on both a start and finish line, then this is a possible change station.

e If a connection is not found with one change of underground line, we search for a connection
involving two changes. A list is made of all stations which can be reached from the starting point
with one change. A check is made for an underground line running from any of these stations to
the destination.

e Due to the highly interconnected nature of the London Underground system, it was found that a
journey could be made between any two stations on the network with a maximum of two changes.

All the necessary data for finding routes can be obtained from the line, station and routePoint tables, as in
the example below.

To find the stations on a particular underground line, such as the Central line shown here, we use the linelD

value to identify all route points on that line. The names of the stations can then be found from the
stationlID value. At this stage we are not concerned about the order in which the stations occur along the
line, but only that they lie on the same underground line.

465

Web-based programming pro

jects

routePointlD linelD stationlD pointer backpointer branch position
7 /1\ 235 8 6 1 0
8 1 121 20 7 1 0
9 1 @ 24 10 1 0
10 1 g Q 11 1 i}
11 1 9 StationlD StationName Xpos Ypos Position
- \ i) 2 1 Tottenham*Court Road 1237 806 T
Oxford*Circus 1131 3807 1
3 Camden Town* 1279 544 8
4 Swiss Cottage™ 1014 588 3
linelD /lineName colourCode solid | 1495 1012 5
Central 227,4436 1
2 Northern 36.32,33 1
3 Circle 248,210.8 1

Notice that some stationID values show no station name. These represent points which were inserted
between stations simply to allow the line to follow a more accurate route on the map.

We will begin by creating a function to obtain all station names for points along a specified underground

line. Go to the RoutePoint.php class file and add a stationList() method as shown below. This uses an SQL
command to obtain the stationlDs, then another SQL command to obtain the corresponding station names.
The results are returned as a $SstationName array.

/
{

$i=1;
$count=0;
while ($i <=
{

}

$num)

{

$count++;
}
$i++;

include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT stationID FROM routePoint WHERE lineID='$lineID'";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);

mysqli_close($conn);
return $stationName;

public static function stationList($lineID)

$row=mysqli_fetch_assoc($result);
$station=$row["stationID"];
$stationQuery="SELECT StationName FROM stations WHERE

StationID="'$station'";

$stationResult=mysqli_query($conn, $stationQuery);
$row=mysqli_fetch_assoc($stationResult);
$name=$row["StationName"];
if (strlen($name)>2)

nxwowow

$stationName[$count]=trim(str_replace(, ,$name));

=

\

466

Chapter 7: London Underground

Save the RoutePoint.php file and copy it to the server.

Return to findRoute.php and add lines of program code as shown below. The 'include' commands will
allow access to the RoutePoint, Line and Stations classes. A loop is then used to obtain station lists for each
of the underground lines in turn. Checks are carried out to determine whether both 'fromStation' and
'toStation' are present in the same list, indicating that the journey can be carried out without changing line.

<?
$fromStation=$ REQUEST['fromStation'];
$toStation=$_REQUEST['toStation'];

include('RoutePoint.php');
include('Line.php');
include ('Stations.php');
$routeResultCount=0;
$routeResult=array();
$routeResult[] = array();

?>

<html>

<body>

<?
$message=$fromStation." to ".$toStation;
echo $message;

4 $lineCount=Line::loadLines();)
for ($j=1;%j<=%$1lineCount;$j++)
{

$1ineID=Line::$1ineObj[$j]->1ineID;
$fromFound=false;

$toFound=false;
$list=RoutePoint::stationList($1inelID);
for ($i=0;%$i<=count($list);$i++)

if ($list[$i]==$fromStation)
{

$fromFound=true;

}
if ($list[$i]==%toStation)
{

$toFound=true;

}

}

if (($fromFound==true)&&($toFound==true))

{
$lineName=Line::getLineName($1lineID);
$routeResultCount++;
$routeResult[$routeResultCount][1]=$fromStation;
$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1ineName;

N /
echo"<form method=post action='index.php?message=".$message."’
echo"<p><input type=submit value='continue'>";
echo"</form>";

?>

</body>

467

Web-based programming projects

Results will be displayed in a table. Continuing to work in the findRoute.php file, insert lines of code to
produce table headings, then a loop to output the details of routes which have been found.

Save findRoute.php and copy it to the server.

$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1lineName;

}
}

4 echo"<p>"; N\
echo"<table border=1 cellpadding=5>";

echo"<tr><th></th>";

echo"<th>From station</th>";

echo"<th>To station</th>";

echo"<th>First line</th>";

for ($i=1;%$i<=%$routeResultCount;$i++)

{
echo"<tr><td>".$i."</td>";
echo"<td>".$routeResult[$i][1]."</td>";
echo"<td>".$routeResult[$i][2]."</td>";
echo"<td>".$routeResult[$i][3]."</td>";
}
\ echo"</table>"; J

echo"<form method=post action='index.php?message=".$message."'>";

echo"<p><input type=submit value='continue'>";

Open the Line.php class file and add a small method as shown below. This will take the ID number for an
underground line as the input parameter, then return the corresponding line name. Save Line.php and
copy it to the server.

(public static function getLineName($lineID) A
{
$lineCount = Line::loadLines();
for($i=1;%$i<=$1ineCount;$i++)
if (Line::$1ineObj[$i]->1ineID == $1linelD)
$lineName = Line::$1ineObj[$i]->1ineName;
}
return $lineName;
}
g J
}
?>

Run the web site. Carry out tests by entering a series of journeys which can be made without changing
underground line. In each case, check that the program selects the correct line(s) as in the examples shown

South Kensington to Monument South Kensington to King's Cross St Pancras
From station To station || First line From station To station First line
1 | South Kensington || Monument | Circle 1 || South Kensington || King's Cross St Pancras || Circle
2 || South Eensington | Monument || District 2 | South Kensington | King's Cross St Pancras || Piccadilly
| continue | | continue |

468

Chapter 7: London Underground

We can now move on to consider journeys where one change of line is necessary. The strategy will be to

keep a list of the underground lines serving the start station, and another list of the lines serving the
destination. Stations along these lines can then be compared to find a change point.

Return to the findRoute.php file. Go to the loop structure and add lines to the two 'if..." blocks. These will

collect the linelD values for any lines passing through the start or destination stations and store them in
arrays.

$toFound=false;
$list=RoutePoint::stationList($1linelD);
for ($i=0;%i<=count($list);pi++)

if ($list[$i]==$fromStation)
{

$fromFound=true;

$fromCount++;
$fromArray[$fromCount]=$1inelD;

b
if ($list[$i]==%$toStation)

{
$toFound=true;
$toCount++;
$toArray[$toCount]=$1inelD;
}

}
if (($fromFound==true)&&($toFound==true))

Add three variables near the start of the <body> section.

$message=$fromStation." to ".$toStation;
echo $message;

$direct=false;
$fromCount=0;
$toCount=0;

$lineCount=Line::loadlLines();

The Boolean variable Sdirect will be set to true or false, depending on whether a direct connection is found

from the start point to the destination with no change of line. The integer variables $fromCount and
StoCount will count the number of different underground lines serving the start station and the

destination.

Move down towards the end of the <body> section and add the line of program code shown below. The

value of Sdirect is set to true if a direct connection is found.

if (($fromFound==true)&&($toFound==true))
{

(

$direct=true;

$lineName=Line::getLineName($1lineID);
$routeResultCount++;

$routeResult[$routeResultCount][1]=$fromStation;

469

Web-based programming projects

Move down and add the block of program code shown below. This code will operate only if a change
underground line is necessary.

$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1lineName;
}
}
(if ($direct==false))
{
$resultCount= oneChange($fromStation,$toStation, $fromArray,
$toArray, $fromCount, $toCount);
if ($resultCount==0)
{
echo"<p>No connection found";
}
\-) J
echo"<p>";
echo"<table border=1 cellpadding=5>";

The program will call a function oneChange(). Set up this function at the end of the findRoute.php file,
below the closing </body> and </html> tags.

</body>
</html>
((? \
function oneChange($fromStation,$toStation,$fromArray, $toArray, E:il
$fromCount, $toCount)
{

$lineCount=Line::loadLines();
$stationCount=Stations::loadStations();
global $resultArray;
global $routeResult;
global $routeResultCount;
$resultCount=0;
for ($i=1;%$i<=$fromCount;$i++)
{
$lineNamel=Line: :getLineName($fromArray[$i]);
$1listl=RoutePoint::stationList($fromArray[$i]);
for ($j=1;%j<=%$toCount;$j++)
{
$lineName2=Line::getLineName($toArray[$j]);
$list2=RoutePoint::stationList($toArray[$j]);
$count=checkConnection($listl,$list2,$1lineNamel, $1lineName2);
for ($k=1;%k<=%$count;$k++)
{
$routeResultCount++;
$routeResult[$routeResultCount][1]=$fromStation;
$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1lineNamel;
$routeResult[$routeResultCount][4]=$resultArray[$k];
$routeResult[$routeResultCount][5]=$1lineName2;
¥
$resultCount= $resultCount+$count;
}
}

return $resultCount;

470

Chapter 7: London Underground

The function takes each of the lines serving the start station in turn, and compares it to each of the lines

serving the destination. This is done by calling a function checkConnection(). The function returns a list of

any stations which are on both of the lines. A journey could then be made by travelling on the first line,

changing at any shared station, then completing the journey on the second line, e.g.:

Add the checkConnection() and getStationName() functions at the end of the findRoute.php page as
shown below. The checkConnection() function makes use of an array_intersect() command. This very

START LINE DESTIMATION LINE

Queensway Baker Street SHARED STATION(S)
Lancaster Gate Regent's Park I:>

Marble Arch Oxford Circus Oxford Circus
Bond Street Piccadilly Circus

Oxford Circus Charing Cross

useful PHP function takes two arrays as its input parameters, then creates a results array containing only

the items which are common to both of the input arrays.

function checkConnection($listl,$1ist2,$lineNamel,$lineName2)
{
global $resultArray;
$intersection = array_intersect($listl, $list2);
$resultCount=0;
for ($k=0;%k<count($listl);$k++)
{
if (strlen($intersection[$k])>1)
{
$resultCount++;
$resultArray[$resultCount]=$intersection[$k];
}
}

return $resultCount;

}

function getStationName($stationID, $stationCount)

for($i=1;%i<=%$stationCount;$i++)

{
if (Stations::$stationObj[$i]->stationID == $stationID)
{
$stationName = Stations::$stationObj[$i]->stationName;
$stationName=trim(str_replace("*"," ",$stationName));
}
}
return $stationName;
}
?>

Add lines of code to add extra columns to extend the results array, as shown below.

471

Web-based programming projects

echo"<th>From station</th>";
echo"<th>To station</th>";
echo"<th>First line</th>";

echo"<th>First change</th>";
echo"<th>Second line</th>";

{

for ($i=1;%$i<=%$routeResultCount;$i++)

echo"<tr><td>".$i."</td>";

echo"<td>".$routeResult[$i][1]."</td>";
echo"<td>".$routeResult[$i][2]."</td>";
echo"<td>".$routeResult[$i][3]."</td>";
echo"<td>".$routeResult[$i][4]."</td>";
echo"<td>".$routeResult[$i][5]."</td>";

echo"</table>";

Save findRoute.php and copy it to the server. Run the website and select journeys which can be made with
one change of underground line. Check that all route options are displayed correctly. Also check that
journeys requiring more than one change of underground line display the message 'No connection found'.

Queensway to Piccadilly Circus

From station

To station First line | First change || Second line

1 || Queensway

Piccadilly Circus | Central || Oxford Circus | Bakerloo

[

Queensway

Piccadilly Circus | Central || Holborn Piccadilly

| continue |

Mitcham Junction to Brixton

No connection found

When testing the program, you may discover that some routes are duplicated by the search algorithm. We
will return to correct this problem later.

We will now consider journeys involving two changes of underground line. Create a twoChanges()
function in the findRoute.php file by adding the block of code shown on the next page.

The start station may be served by just one line, as in the case of Russel Square, or up to a total of six
different lines in the case of King's Cross. Any line passing through the start station is selected, for example
the Victoria line, and this is designated as linel. A list of all stations along this line is compiled.

The destination station may again be served by one or more lines. Any line passing through the destination
station is selected, for example the Northern line, and this is designated as line2. A list of all stations along
this line is again compiled.

472

eXCD

AN

destination
station

O

first cha\nge

Y

O
© start
station

second change

Chapter 7: London Underground

e)
function twoChanges($fromStation,$toStation,$fromArray, $toArray,$fromCount,$toCount)
{
$lineCount=Line::loadLines();
$stationCount=Stations::loadStations();
global $resultArray;
global $routeResult;
global $routeResultCount;
$resultCount=0;
for ($i=1;%$i<=$fromCount;$i++)
{
$lineNamel=Line: :getLineName($fromArray[$i]);
$listl=RoutePoint::stationList($fromArray[$i]);
for ($j=1;%j<=%$toCount;$j++)
{
$lineName2=Line: :getLineName($toArray[$3]);
$list2=RoutePoint::stationList($toArray[$j]);
for ($h=1;%$h<=$lineCount;$h++)
{
$1lineID = Line::$1ineObj[$h]->1inelD;
if (($1lineID != $fromArray[$i])8&&($1ineID != $toArray[$jl))
{
$1list3=RoutePoint::stationList($1linelD);
$lineName3=Line::getLineName($1lineID);
$resultl=checkConnection($listl,$1list3,$1lineNamel,$1lineName3);
$resultArrayl=$resultArray;
$result2=checkConnection($list2,$1ist3,$1lineName2,$1lineName3);
$resultArray2=$resultArray;
if (($resultl>=1)8&($result2>=1))
{
for ($k=1;%k<=%$resultl; $k++)
{
for ($w=1;%w<=$result2;$w++)
{
$routeResultCount++;
$routeResult[$routeResultCount][1]=$fromStation;
$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1ineNamel;
$routeResult[$routeResultCount][4]=$resultArrayl[$k];
$routeResult[$routeResultCount][5]=$1ineName3;
$routeResult[$routeResultCount][6]=$resultArray2[$w];
$routeResult[$routeResultCount][7]=$1ineName2;
$resultCount++;

}
}
}
¥
}

return $resultCount;

\ J

We now search for a third line which connects lines 1 and 2 and would form the central link of a journey
involving two changes. We choose a line different to lines 1 and 2, such as the Central line. This is
designated as line3 and a list of all stations along the line is again compiled.

The checkConnection() function is called to determine whether one or more stations are on both line 1
and line 3. Itis also called to determine whether any stations are on both line 2 and line 3. If shared

stations are found in both cases, then a route has been found. The names of lines 1,2 and 3 are recorded,

along with the names of the possible change stations.

473

Web-based programming projects

The program then uses loops to check other start, finish and connecting lines, so that all routes from the
start station to the destination station involving two changes of underground line are found.

We again need to extend the results array to display the additional data. Add code as shown below.

echo"<th>First change</th>";
echo"<th>Second line</th>";

echo"<th>Second change</th>";
echo"<th>Third line</th>";

for ($i=1;%$i<=$routeResultCount;$i++)

{
echo"<tr><td>".$i."</td>";
echo"<td>".$routeResult[$i][1]."</td>";
echo"<td>".$routeResult[$i][2]."</td>";
echo"<td>".$routeResult[$i][3]."</td>";
echo"<td>".$routeResult[$i][4]."</td>";
echo"<td>".$routeResult[$i][5]."</td>";

echo"<td>".$routeResult[$i][6]."</td>";
echo"<td>".$routeResult[$i][7]."</td>";

}

echo"</table>";

Continuing to work in the findRoute.php file, insert program lines to call the twoChanges() function.

if ($direct==false)
{
$resultCount=oneChange($fromStation, $toStation, $fromArray,
$toArray, $fromCount, $toCount);

if ($resultCount==0)

{
$resultCount=twoChanges($fromStation, $toStation, $fromArray,

$toArray, $fromCount, $toCount);
}

if ($resultCount==0)
{

}

echo"<p>No connection found";

Save the findRoute.php file and copy it to the server.

Run the website and select journeys which require more than one change of underground line. Check that
all route options are displayed correctly.

Brixton to Lewisham

From station | To station | First line First change Second line Second change | Third line

1 || Brixton Lewisham || Victoria | Oxford Circus Central Bank DLR

2 || Brixton Lewisham || Victoria | Oxford Circus Central Stratford DLR

3 (| Brixton Lewisham || Victoria | Oxford Circus Central Stratford DLR

4 || Brixton Lewisham || Victoria | Victoria District West Ham DLR

5 || Brixton Lewisham || Victoria | King's Cross St Pancras | Hammersmith and City | West Ham DLR
Brixton Lewisham || Victoria || Green Park Jubilee Canning Town | DLR

7 || Brixton Lewisham || Victoria | Green Park Jubilee Canary Wharf | DLR

474

Chapter 7: London Underground

When testing the program, you may discover that some routes are duplicated by the search algorithm, as in
the case of options 2 and 3 listed above. This problem can be corrected by including a removeDuplicates()
function.

Return to the findRoute.php file. Add a line of code to call removeDuplicates() before the results table is
displayed.

if ($resultCount==0)
{

}
}

($routeResult=removeDuplicates($routeResult, $routeResultCount);)

echo"<p>No connection found";

echo"<p>";

echo"<table border=1 cellpadding=5>";
echo"<tr><th></th>";

echo"<th>From station</th>";

Go to the end of the findRoute.php file and add the removeDuplicates() function, as shown below. Save
findRoute.php and copy it to the server.

4)
function removeDuplicates($routeResult, $routeResultCount)
{

global $routeResultCount;

for ($i=1;%$i<=%$routeResultCount;$i++)

$c[$i]=$routeResult[$i][1]." ".$routeResult[$i][2]." " E:il

.$routeResult[$i][3]." ";
$c[$i]=$c[$i].$routeResult[$i][4]." ".$routeResult[$i][5]." ";
$c[$i]=$c[$i].$routeResult[$i][6]." ".$routeResult[$i][7];
$routeResult[$i][10]=0;

b
for ($i=2;%$i<=%$routeResultCount;$i++)
{
$current=$c[$i];
for ($j=1;%$j<$i;$j++)
{
if ($c[$j]==%current)
{
$routeResult[$i][10]=-1;
$routeResult[$i][8]=-1;
}
}
b

$tempCount=0;
for ($i=1;%$i<=%$routeResultCount;$i++)

if ($routeResult[$i][10]==0)

{
$tempCount++;
$tempArray[$tempCount]=$routeResult[$i];

}

}
$routeResult=$tempArray;

$routeResultCount=$tempCount;
return $routeResult;

475

Web-based programming projects

The function operates by making up a text string for each row of the results table by combining the station
and underground line entries in each of the columns. This string is then compared with the text strings
produced for all previous rows, and the current row is marked for deletion if the exact same set of route
data is found.

Run the website. Select journeys involving one or two changes of underground line, and check that there
are now no duplicated routes in the results table.

Brixton to Lewisham
From station || To station || First line First change Second line Second change | Third line
1 | Brixton Lewisham | Victoria || Oxford Circus Central Bank DLR
Brixton Lewisham | Victoria || Oxford Circus Central Stratford DLR
3 | Brixton Lewisham || Victoria | Victoria District West Ham DLE
4 | Brixton Lewisham || Victoria | King's Cross 5t Pancras || Hammersmith and City | West Ham DLE

When testing the program with journeys involving changes of underground line, you will discover that a
large number of different routes may be displayed. Some routes, whilst theoretically possible, may be
much longer than others. We will recommend that the traveller chooses the route with the least number
of intermediate stations on the assumption that this will be the shortest and most direct route.

Counting the intermediate stations between two points may not be a straightforward task. As we saw in
the introduction to this chapter, the London Underground system has some lines which include loops, and
some lines with multiple branches. As a consequence, the processing time required may be significant for a
long list of alternative routes. To reduce the processing time, the more unsuitable routes can be quickly
filtered out by estimating route lengths on the map display.

Consider a journey involving two changes of underground line. Straight line distances on the map between
journey points can be found by means of Pythangoras' theorem:

change 1 line 1

destination

change 2

The straight line distance from the start station to the first change station is given by:

d, =/ dx? + dy?

where dx is the difference in x coordinates between the station points, and dy is the difference in the vy
coordinates. After calculating the straight line lengths di, d> and ds for the stages of the journey, the results
can be added to obtain an estimate for the whole journey distance measured in screen pixels.

476

Chapter 7: London Underground

Open the Stations.php class file and add the getPixels() method shown below. Save Stations.php and

copy it to the server.

The getPixels() method takes two station names as input parameters. A loop then checks each Station

object to obtain the x- and y-coordinates of the stations. Pythagoras' formula is then used to calculate the
straight line distance between the stations.

-
{

{

{

{

}
¥

-

$s=
$s=
$s=
if ($s==$fromStation)

public static function getPixels($fromStation,$toStation)

$stationCount=Stations::loadStations();
$distance = 0;
for ($i=1;%i<=%$stationCount;$i++)

Stations::$stationObj[$i]->stationName;
str_replace("*"," ",$s);
trim($s);

$fromx=Stations::$stationObj[$i]->xpos;
$fromy=Stations::$stationObj[$i]->ypos;

if ($s==$toStation)

$toX=Stations::$stationObj[$i]->xpos;
$toy=Stations::$stationObj[$i]->ypos;

$distance = sqrt((($fromx-$toX)*($fromX-$toX))+(($fromy-$toY)*($fromy-$toY)));
return $distance;

J

Return to the findRoute.php file. Locate the oneChange() function and add lines of program code as

shown below.

$count=checkConnection($listl,$1list2,$1lineNamel, $lineName2);
for ($k=1;$k<=$count;$k++)

{

$routeResultCount++;
$routeResult[$routeResultCount][1]=$fromStation;
$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1ineNamel;
$routeResult[$routeResultCount][4]=$resultArray[$k];
$routeResult[$routeResultCount][5]=$1ineName2;

$firstStage=Stations::getPixels($fromStation,$resultArray[$k]);
$secondStage=Stations::getPixels($toStation,$resultArray[$k]);
$distance = intval($firstStage+$secondStage);
$routeResult[$routeResultCount][8]=$distance;

}

$resultCount= $resultCount+$count;

¥
}

return $resultCount;

477

Web-based programming projects

Continuing to work in the findRoute.php file, move up to the section where the results table is displayed.
Add a further column heading and data output, as shown below.

echo"<th>Second change</th>";
echo"<th>Third line</th>";

(: echo"<th>Map pixels</th>";)

for ($i=1;%i<=%$routeResultCount;$i++)

if (($resultCount<=4)||($routeResult[$i][8]>9))

{
echo"<tr><td>".$i."</td>";
echo"<td>".$routeResult[$i][1]."</td>";
echo"<td>".$routeResult[$i][2]."</td>";
echo"<td>".$routeResult[$i][6]."</td>";
echo"<td>".$routeResult[$i][7]."</td>";

(echo"<td>".$routeResult[$i][8]."</td>";)
}

}

echo"</table>";

Save the findRoute.php file and copy it to the server.

Run the web site and select several journeys involving one change of underground line. Distances should
be shown in a 'Map pixels' column in the results table. Compare the lengths of the routes on the
underground map and confirm that the estimates seem reasonable.

South Kensington to Bond Street
From station To station || First line First change Second line | Second change | Third line | Map pixels
1 || South Kensington | Bond Street | Circle Notting Hill Gate || Central 358
2 || South Kensington | Bond Street || Circle Liverpool Street || Central 1181
3 || South Kensington | Bond Street || Circle Westminster Tubilee 517
4 || South Kensington | Bond Street || Circle Baker Street Tubilee 433
5 | South Kensington | Bond Street | District Ealing Broadway || Central 1192
6 | South Kensington | Bond Street || District Notting Hill Gate || Central 358

Return to the findRoute.php file and locate the twoChanges() function. Add program code as shown
below. This calls the getPixels() method three times, for each stage of the journey, then adds the results.

$routeResult[$routeResultCount][5]=$1ineName3;
$routeResult[$routeResultCount][6]=$resultArray2[$w];
$routeResult[$routeResultCount][7]=$1lineName2;

$firstStage=Stations::getPixels($fromStation,$resultArrayl[$k]);
$secondStage=Stations::getPixels($resultArrayl[$k],$resultArray2[$w]);
$thirdStage=Stations::getPixels($toStation,$resultArray2[$w]);
$distance = intval($firstStage+$secondStage+$thirdStage);
$routeResult[$routeResultCount][8]=$distance;

$resultCount++;

478

Chapter 7: London Underground

Save findRoute.php and copy it to the server. Run the web site. Select several journeys requiring two
changes of underground line. Again check that the estimated distances in the 'Map pixels' column seem

reasonable for the routes shown.

London City Airport to Blackhorse Road

From station To station First line | First change Second line Second change Third line | Map pixels
1 || Londen City Airport | Blackhorse Road | DLR Bank Central O=xford Circus Victoria 1971
2 | Londen City Airpert || Blackhorse Road | DLR Stratford Central Oxford Circus Victoria 2285
3 || Londen City Airport || Blackhorse Road | DLR West Ham District Victoria Victoria 2402
4 || Londen City Airport || Blackhorse Road | DLR West Ham Hamersmith and City | King's Cross St Pancras | Victoria 1691
5 || Londen City Airport | Blackhorse Road | DLR Canning Town || JTubilee Green Park Victoria 2135
6 || Londen City Airport || Blackhorse Road | DLR Canary Wharf || Jubilee Green Park Victoria 2093
7 || London City Airport || Blackhorse Road | DLR Stratford Jubilee Green Park Victoria 2454

Go to the end of the findRoute.php file and add the compareDistances() function shown on the next page.

A loop checks through the list of routes, picking out the row with the largest map pixel value. The pixel

entry on this row is then replaced by a rogue value of -1.

From station To station First line | First change Second line Second change Third line | Map pixels
1 || London City Airport | Blackhorse Road || DLR Bank Central Onford Circus Victoria 1971
London City Airport || Blackhorse Road | DLR Stratford Central Ouford Circus Victoria 2205
3 || London City Airport | Blackhorse Road | DLR West Ham District Victoria Victoria -1
4 | Londen City Airport | Blackhorse Road | DLR West Ham Hammersmith and City | King's Cross 5t Pancras || Victoria 1691
5 || London City Airport | Blackhorse Road || DLR Canning Town | Jubilee Green Park Victoria 2135

The procedure is repeated, setting the highest remaining pixel value to -1 on each pass, until only the four

routes with the shortest estimated distances remain unaltered.

function compareDistances($routeResult, $routeResultCount)
{
for ($j=1;%$j<=($routeResultCount-4);%$j++)
{
$max=0;
for ($i=1;%$i<=$routeResultCount;$i++)
{
if ($routeResult[$i][8]>9)
if ($routeResult[$i][8]>$max)
{
$max=$routeResult[$i][8];
$maxpos=$i;
}
}
}
$routeResult[$maxpos][8]= -1;
}
return $routeResult;
¥
-
?>

479

Web-based programming projects

Move to the section of the findRoute.php file where the results table is displayed. Call the
compareDistances () function and add an if.. conditional block so that only the routes left unaltered by the
compareDistances() function are displayed.

echo"<th>Map pixels</th>";

($routeResu1t=compareDistances($routeResu1t,$routeResultCount);)
for ($i=1;%i<=%$routeResultCount;$i++)
{
(: if (($resultCount<=4)||($routeResult[$i][8]>0))
{

echo"<tr><td>".$i."</td>";

echo"<td>".$routeResult[$i][1]."</td>";
echo"<td>".$routeResult[$i][2]."</td>";
echo"<td>".$routeResult[$i][7]."</td>";
echo"<td>".$routeResult[$i][8]."</td>";

€)
}

echo"</table>";

Save the findRoute.php file and copy it to the server. Run the web site and select a variety of journeys
involving one or two changes of underground line. In each case, no more than four possible route options
should be listed.

Hounslow Central to London City Airport
From station To station First line | TFirst change | Second line | Second change | Third line | Map pixels
1 [Hounslow Central | London City Airport || Piccadilly || Holborn Central Bank DLR 2066
16 | Hounslow Central | Londen City Auwrport || Piccadilly || Green Park Tubilee Canary Wharf || DLR 2032
18 | Hounslow Central | Londen City Auwrport || Piccadilly || Green Park Tubilee Canning Town || DLR 2074
21 || Hounslow Central | London City Airport | Piccadilly || Leicester Square | Northern Bank DLR 2043
| continue |

The next step is to count the number of intermediate stations along each route. A preferred route can then
be selected with the least intermediate stations, and an alternative route selected with the second-least
number of intermediate stations.

A new class will be created with the name 'Branch’. This differs from the other classes in the program as it
is not linked to a particular database table. Instead, Branch will obtain its data from the routePoint, station
and line tables as necessary.

A Branch object will represent each separate branch of an underground line. The line may be simple with
all stations on a single branch, or may have a number of branches serving different destinations.

BRANCH 2

Chalfont and
Latimer

Chesham

BRANCH 3
Watford

Amersham BRANCH 1

Chorleywood Croxley

Rickmansworth Moor Park

Northwood

480

Chapter 7: London Underground

Open a new file and add the program code shown below. Save the file as Branch.php.

Ve

<?
class Branch

{

public static $branchObj = array();
private $branchlID;

private $1linelD;

private $stationID = array();
private $stationName = array();
private $pointCount;

function __construct($branchID,$1linelID, $pointCount,$stationID, $stationName)
{

$this->branchID = $branchID;

$this->1ineID = $1inelD;

$this->pointCount = $pointCount;

$this->stationID = $stationID;

$this->stationName = $stationName;

The Branch objects will be constructed by accessing linked lists of stations stored in the RoutePoint
database table. Each linked list, as in the example below, represents the sequence of station points along a
branch of an underground line.

routePointID | linelD | stationID | pointer | backpointer
1 2 -1
3 2 A
4 2
5 2 bt
6 2 -1
7 4 -1
8 4 L3 Bl
9 4
10 4 -1
12 5 o
13 5 C
15 7. P |
17 4 : -1 B2
18 4] -1
22 5 b
24 5 C
25 5 v -1

Each linked list begins with a backpointer set to -1, and ends with a pointer set to -1. The linked list
is accessed in sequence by means of pointers which refer to routePointID values.

A linked list may move forwards (e.g. list A) or backwards (e.g. list B1) through the set of records in
the database table.

An underground line with several branches will appear as separate linked lists (e.g. B1 and B2).

The linked list may be split across several blocks of records, depending on the pattern in which the
data was entered, (e.g. list C). The sequence can, however, be easily followed from start to finish
by means of the pointer values.

481

Web-based programming projects

Continuing to work on the Branch.php file, add the loadBranch() method shown below.

public static function loadBranch($lineIDwanted)

{
echo"<p>Loading branches for line ".$lineIDwanted;
$pointCount = RoutePoint::loadPoints();
$stationCount = Stations::loadStations();
$count=0; $objectCount=0;
$stationID = array();
$stationName = array();
for ($n=1;%$n<=$pointCount;$n++)
{
if (RoutePoint::$pointObj[$n]->backpointer==-1)
{
$1lineID=RoutePoint::$pointObj[$n]->1inelD;
if ($lineID==%$1lineIDwanted)
{
$count++;
$routePointID=RoutePoint::$pointObj[$n]->routePointID;
$stationID[$count]=RoutePoint::$pointObj[$n]->stationID;
$stationName[$count]=Branch::getStationName($stationID[$count],
$stationCount);
$pointer=RoutePoint::$pointObj[$n]->pointer;
$next=$pointer;
$finished=false;
while ($finished==false)
{
for ($m=1;$m<=$pointCount;$m++)
{
$routePointID=RoutePoint: :$pointObj[$m]->routePointID;
if ($routePointID==$next)
{
$count++;
$stationID[$count]=RoutePoint: :$pointObj[$m]->stationID;
$stationName[$count]=
Branch: :getStationName($stationID[$count],$stationCount);
$next=RoutePoint: :$pointObj[$m]->pointer;
}
}
if ($next== -1)
{
$objectCount++;
echo"<p>Branch ".$objectCount;
for ($s=1;%s<=%$count;$s++)
{
echo"
".$s.": ".$stationID[$s].", ".$stationName[$s];
}
$obj = new Branch($objectCount, $lineIDwanted,
$count,$stationID, $stationName);
Branch: :$branchObj[$objectCount] = $obj;
$finished=true; $count=0;
}
}
}
}
}
return $objectCount;
_)
}
?>

482

Chapter 7: London Underground

The method creates a Branch object for each linked list found in the RoutePoint table. The structure of the
object is:

Attribute Data type Description

branchlD integer identification number for the branch

linelD integer identification number for the underground line

stationID array of integers sequence of stationID values along the branch
stationName | array of strings corresponding sequence of station names along the branch
pointCount integer number of entries in the stationID array

The station names are obtained from the stationID numbers by means of a getStationName() method.
Add this to the Branch.php file. Save the file and copy it to the server.

private static function getStationName($IDwanted,$stationCount)
{

$name=u |l;

for ($i=1;%i<=$stationCount;$i++)

{

if (Stations::$stationObj[$i]->stationID==$IDwanted)
$name=Stations::$stationObj[$i]->stationName;

}

$name=str_replace("*"," ",%$name);

$name=trim($name);

return $name;

?>

'Echo’ text output lines were included in loadBranch() to allow testing of the method. We can carry out
these tests now. Return to the findRoute.php file and add a line of code near the start to include the
Branch class:

<?
$fromStation=$_ REQUEST['fromStation'];
$toStation=$_REQUEST['toStation'];
include('RoutePoint.php');
include('Line.php');
include ('Stations.php');
$routeResultCount=0;
$routeResult=array();
$routeResult[] = array();

(include ('Branch.php');)

?>
<html>

Locate the block of code in findRoute.php which operates when a journey connection is found without a
change of underground line. Add program lines to create Branch objects.

483

Web-based programming projects

if (($fromFound==true)&&($toFound==true))

{
$direct=true;
$lineName=Line::getLineName($1inelID);
$routeResultCount++;
$routeResult[$routeResultCount][1]=$fromStation;
$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1lineName;

(: $branchCount=Branch::loadBranch($1lineID); :)
}
}

Save findRoute.php and copy it to the server.

Run the web site and select a journey between two stations on the same underground line. When the 'find

route' button is clicked, a list should be displayed which shows the stations in sequence along each of the
branches of the selected line.

Belsize Park to Archway

Loading branches for line 2

Branch 1

Branch 2 Branch 3
1: 197, High Bamet

:] 1: 22, Edgware 1: 198, Mill Hill East

: 243, Totteridge and Whetstone 2: 157, Burnt Oak 2:193. Finchlev Central
- 244 Woodside Park 3- 156. Colindale ' i

- 201, West Finchley 4 154; Hendon Central

: 193, Finchley Central 5: 155, Brent Cross

: 239, East Finchley 6: 6, Golders Green

[R R L i v

In some cases, stationlDs are shown with no station names alongside. These are the additional points
inserted to allow the line to follow the map more accurately.

The next step is to calculate the number of intermediate stations between the start and destination
stations for a journey along one underground line. The procedure can be extended later to allow journeys
where a change of line is necessary. Although only a single underground line will be involved, the start and
finish stations may lie on different branches of the line as in the example below.

branch 1
1 2 3 4 5 6 7 8 S 10 11 12 13 14 15
O—OC— OO OO0 00O O O—O0O—C—0O——10O
O 4 30
73 ~ finish
O 2 & 6» 2 O
& %, O
start @ 1 © e 1

A strategy for calculating the number of intermediate stations is outlined in the flowchart on the next page.

484

Chapter 7: London Underground

Get start and finish points for
current leg of jouney

change

Get station sequence for each branch
of the specified underground line

Get sequence of branches
which link the start and finish

—Yes.

Y

Select branch along the route.
Count intermediate stations.

Branch links ta

Yes

Y

Count intermediate stations in

hoth directions around the loop.

Select the lower number.

itself?

No

Branch links
1o another branch at
two points between start and
finish ?

No

Another
branch included in

route between start and
finish?

No

Another leg of

the journey on a different
line?

No

.

Calulate total of intermediate stations

v

oL

branch 1

link

start :
1 branch1
&

“‘B

change

link
paint
~

start D(.'-’

journey leg
start

journey le
finis|

i

journey leg

start branch 1

——O—?_'_.’j?—
journey le
-0—0-0—e—0" [

branch 2

485

Web-based programming projects

e The loadBranch() method will be used to create lists of stations in sequence along each of the

branches of the required underground line.

e If the start and destination lie on a single branch, the number of intermediate stations can be

counted directly.

e [f the start and destination lie on different branches, the number of stations which the route
passes through on each branch are added to obtain the total number of intermediate stations for

the complete journey.

e Inthe special cases of journeys involving loops of track, the numbers of intermediate stations will
be calculated for both directions of travel around the loop. The smaller of these results will then

be selected.

The calculations will be coordinated by a countStations() method in the Branch class. This will take the
linelD of an underground line and the stationlIDs of two points on that line, then calculate and return the

number of intermediate stations between these points.

e Foraroute where the start and destination stations lie on the same underground line, though not
necessarily on the same branch, the countStations() method will be called once.

e For aroute involving one change, the countStations() method will be called to find the number of
stations between the start and change point on the first line. It will be called again to find the
number of stations between the change point and destination on the second line, then the results

will be added to obtain the complete journey.

e For aroute involving two changes, the countStations() method will be called three times for the

different legs of the journey.

Return to the Branch.php class file and add the locateStations() method.

4 N
public static function locateStations($fromStation,$toStation,$branchCount)
{
for ($i=1;%$i<=$branchCount;$i++)
{
$pointCount=Branch: :$branchObj[$i]->pointCount;
$location[$i][@]=0;
$location[$i][1]=0;
for ($j=1;%j<=$pointCount;$j++)
{
$currentStation = Branch::$branchObj[$i]->stationName[$7];
if($currentStation == $fromStation)
$location[$i][@]= Branch::$branchObj[$i]->stationID[$j];
if($currentStation == $toStation)
{
$location[$i][1]= Branch::$branchObj[$i]->stationID[$j];
}
}
}
return $location;
!})
}
?>

Continuing to work in the Branch.php class file, create the countStations() method as shown below. This
begins by calling the locateStations() method to determine the numbers of the branches on which the

start and finish stations lie. Save the Branch.php file and copy it to the server.

486

Chapter 7: London Underground

~
public static function countStations($fromStation,$toStation,$branchCount)
{
$location = Branch::locateStations($fromStation, $toStation,$branchCount);
for ($i=1;%$i<=$branchCount;$i++)
{
echo"
Branch ".$i.": From location = ".$location[$i][@] ‘:ﬁ
.": To location = ".$location[$i][1];
¥
}
- 4
}
?>

Return to the findRoute.php file and again locate the block of code which operates for a journey on a single

underground line. Add a line to the program to call the countStations() method.

if (($fromFound==true)&&($toFound==true))

{
$direct=true;
$1lineName=Line: :getLineName($1ineID);
$routeResultCount++;
$routeResult[$routeResultCount][1]=$fromStation;
$routeResult[$routeResultCount][2]=$toStation;
$routeResult[$routeResultCount][3]=$1lineName;
$branchCount=Branch: :loadBranch($1lineID);

$intermediate = :i
Branch: :countStations ($fromStation,$toStation, $branchCount,$lineName);

}
}

Save findRoute.php and copy it to the server. Run the website and select a journey involving only one
underground line, but beginning and ending on different branches. Click the find route' button and

examine the output, as in the example below.

Woolwich Arsenal to Tower Gateway

Loading branches for line 8

Branch 1 Branch 3

1: 86, Bank [1:42, Woolwich Arsenal |
2: 459, 2: 112, King George V

3: 460, 3: 18, London City Airport

4: 80. Shadwell 4: 141, Pontoon Dock

5: 10, Limehouse 5: 176, West Silverton
Branich 2 Branch 4

: 48, Lewisham [1:88. Tower Gateway

]

1
o L s
;. 146, Elverson Road 2: 460,

: 145, Deptford Bridge
4: 57. Greenwich
5: 11, Cutty Sark for Maritime Greenwich
6: 19, Island Gardens

Branch 1: From location = 0: To location =0
Branch 2: From location = 0: To location =0
Branch 3{From location = 42:)To location =0

Branch 4: From location = 0:[To location = 88

487

Web-based programming projects

The stations should be shown in sequence for each branch as previoulsy. A further block of text indicates if
the required stationlID values have been found on any of these branches, with results of 0 shown if not
present.

Test the program for several journeys on different underground lines, but each time beginning and ending
the journey on the same line. Check that the correct start branch and destination branch are selected, and
that the correct stationID values are shown.

If stations are located correctly, the 'echo' lines in the loadBranch() method in the Branch.php file can now
be removed. Alternatively, the output lines can be de-activated by inserting // symbols at the start of the
line, e.g.

public static function loadBranch($lineIDwanted)
{

(://echo"<p>Loading branches for line ".$lineIDwanted;)

$pointCount = RoutePoint::loadPoints();

We can now begin the calculation of intermediate stations during journeys. The results will be displayed as
another column in the summary table.

Go to the findRoute.php file and locate the block of code which produces the table. Add lines of code as
shown below, save the file and copy it to the server.

echo"<th>Second change</th>";
echo"<th>Third line</th>";
echo"<th>Map pixels</th>";

(: echo"<th>Intermediate stations</th></tr>";)
$routeResult=compareDistances($routeResult, $routeResultCount);
for ($i=1;%$i<=%$routeResultCount;$i++)

{

if (($resultCount<=4)||($routeResult[$i][8]>0))

{
echo"<tr><td>".$i."</td>";
echo"<td>".$routeResult[$i][1]."</td>";
echo"<td>".$routeResult[$i][2]."</td>";
echo"<td>".$routeResult[$i][3]."</td>";
echo"<td>".$routeResult[$i][4]."</td>";
echo"<td>".$routeResult[$i][5]."</td>";
echo"<td>".$routeResult[$i][6]."</td>";
echo"<td>".$routeResult[$i][7]."</td>";
echo"<td>".$routeResult[$i][8]."</td>";

(: echo"<td>".$routeResult[$i][9]."</td>";)

}
}
echo"</table>";

Return to the Branch.php class file and locate the countStations() method. Add the lines of program code
shown below.

The program has a loop which checks each of the branches of the specified underground line. If the branch
includes the stationlDs for both the start and destination, a stationsBetween() method is called to
determine the number of intermediate stations for the journey.

488

Chapter 7: London Underground

public static function countStations($fromStation,$toStation,$branchCount)
{
$location = Branch::locateStations($fromStation,$toStation,$branchCount);
for ($i=1;%$i<=$branchCount;$i++)
{
echo"
Branch ".$i.": From location = ".$location[$i][@]
": To location = ".$location[$i][1];
4 $first=true;)
$foundRoute=false;
for ($i=1;%i<=%$branchCount;$i++)
{
if (($location[$i][0]>0)&&($1location[$i][1]>0))
{
$foundRoute=true;
$stations=Branch::stationsBetween($location[$i][@], E:il
$location[$i][1],%i);
if ($first==true)
{
$intermediate = $stations;
$first = false;
}
else
if ($stations<$intermediate)
$intermediate = $stations;
}
}
}
g J
b
(: return $intermediate;)
}

We allow for the start and destination both occurring together on more than one branch, as in the case of
journeys between Kennington and Camden Town on the Northern line, or Leytonstone and Woodford on
the Central line, as shown below. In this case, calculations are carried out for both branches and the lower
number of intermediate stations is selected.

Camden Town
Woodford ¢

Leytonstone (

Kennington

Continuing to work in the Branch.php class file, add the stationsBetween() method on the next page. Save
the Branch.php file and copy it to the server.

489

Web-based programming projects

-

public static function stationsBetween($startStationID,$finishStationlID, A

$branchID)

{

$pointCount=Branch::$branchObj[$branchID]->pointCount;
$fromFound=Ffalse;
$toFound=false;
$intermediate=0;
$first=Ffalse;
echo"
";

for ($j=1;%j<=$pointCount;$j++)

{
$stationID = Branch::$branchObj[$branchID]->stationID[$j];
$stationName = Branch::$branchObj[$branchID]->stationName[$j];
echo"
".$j.": ".$stationID.", ".$stationName;

if (($stationID==$finishStationID)||($stationID==$startStationID))
{

if ($fromFound==false)

{

$fromFound=true;

$first=true;

echo" *****************from Station";

}

else

$toFound=true;
echo“ *****************to Station"j

}

if (($fromFound==true)&&($toFound==false)&&($first==Ffalse))
{

if (strlen($stationName)>1)
{

$intermediate++;
echo" [".$intermediate."]";
}
}
$first=false;
}

echo"
";
return $intermediate;

__! Y,
}

?>

Go to findRoute.php and locate the block of code which called the countStations() method. Add a line of

code to copy the number of intermediate stations into the results array, ready to display in the summary
table. Save the file and copy it to the server.

SrouteResult[SrouteResultCount][2]=StoStation;
SrouteResult[SrouteResultCount][3]=SlineName;
SbranchCount=Branch::loadBranch(SlinelD);

Sintermediate = Branch::countStations(SfromStation,StoStation,SbranchCount,SlineName);

(SrouteResult[SrouteResultCount][9]=Sintermediate;

)
}

490

Chapter 7: London Underground

Run the web site. Select a journey which can be
completed on a single branch of one underground Stockwell to Oxford Circus

line. Click the 'find route' button and examine the Branch 1: From location = 23: To location =2
output.

- 7, Brixton

0 23, Stockwe]] FEEsEssssssEsE=EE om station
29, Vauxhall [1]

c435,

1
The stationlIDs and stationNames should be listed | 2
3
4
5: 46, Pimlico [2]
&
7
g

in sequence along the branch. Start and finish
stations for the journey are indicated. The
direction of travel is not important, as we will
simply count the number of intermediate stations
for the journey. Note that route points with no
station name are not included in the count.

- 374, Victoria [3]

- 98, Green Park [4]

c451,
Q: 2, Oxford Circug #EssssEsssssss=itn station
10: 104, Warren Street
11: 106, Euston

The final result should be displayed as an o
12: 43, King's Cross 5t Pancras

additional column in the summary table.

Check that the correct numbers of intermediate stations are found for journeys involving only a single
branch of any of the underground lines. Correct counts should be shown, with the possible exception of
some journeys on the Circle line where the program has counted the 'long way' following the loop in the
wrong direction as shown below. We will return to the problem of the Circle line later.

Edgware Road to King s Cross 5t Pancraz

From station To station First line First change | Second line | Second change | Third line | Map pixels | Intermediate

,_.
12

Edgware Road | King's Cross St Pancras || Circle 2

[B]
L

Edgware Road | King's Cross St Pancras || Hammersmith and City

We now move on to consider start and destination stations lying on the same underground line, but on
different branches. Let us assume that the start and destination branches are directly linked, as in the
example below:

branch 1
1 2 3 4 3 5] 7 2 5 10 11 12X 13 14 15

OO0 O O OO CC0C=0O Co—CC—=0

~ 4 finish @]
//0/3 0 3
joF) & 6o 5 O
P e D O
start (O 1 0 b 1

The total number of intermediate stations can be found by counting the stations along the route from the
start station on branch 2 to the finish station on branch 1.

Return to the countStations() method in the Branch.php class file. Add a block of code as shown below
which will call a checkLink() method if a direct route is not found between the start and destination on a
single branch of the underground line.

491

Web-based programming projects

$stations=Branch::stationsBetween($location[$i][0], $location[$i][1],%$1);
if ($first==true)
{
$intermediate = $stations;
$first = false;
}

else

if ($stations<$intermediate)
$intermediate = $stations;

}
}
}
}
if ($foundRoute==false)
{

$intermediate=Branch::checkLink($fromStation,$toStation,
$branchCount,$location);

}

return $intermediate;

Add the checkLink() method to the Branch.php class file, as shown below. Save the file and copy it to the
server.

public static function checkLink($fromStation,$toStation,$branchCount,$location)
{
$intermediate = 0;
for ($i=1;%$i<=$branchCount;$i++)
if ($location[$i][0]>0)
{
echo"<p>Start station on branch ".$i;
$fromArray = Branch::$branchObj[$i]->stationID;
$fromCount = Branch::$branchObj[$i]->pointCount;
$fromBranch=%i;
}
}
for ($i=1;%$i<=$branchCount;$i++)
{
if ($location[$i][1]>9)
{
echo"<p>Finish station on branch ".$i;
$toArray = Branch::$branchObj[$i]->stationID;
$toCount = Branch::$branchObj[$i]->pointCount;
$toBranch=%i;
¥
}
return $intermediate;
\} J
}
?>

Run the web site. Select a journey along a single underground line, but starting and finishing on different
branches. Click the 'find route' button and examine the text output. The checkLink() method identifies the
branches for the start and destination stations, and creates two arrays called fromArray and toArray which
contain the sequence of stationlDs along these branches.

492

Chapter 7: London Underground

Watford to Amersham

Branch 1: From location = 0: Te location =0
Branch 2: From location = 0: To location =71
Branch 3: From location = 0: To location =0
Branch 4: From location = 131: To location =0

Start station on branch 4

Finish station on branch 2

The checkLink() method identifies the branches for the start and destination stations, and creates two

arrays called fromArray and toArray which contain the sequence of stationIDs along these branches.

The next step is to compare the arrays to determine whether one or more station points occur in both. If
so, a connection between the branches has been found. Return to the checkLink() method in the

Branch.php file and add lines of program code to call a compareArrays() method.

$toCount = Branch::$branchObj[$i]->pointCount;
$toBranch=%$i;
}
}

[$resultCount=count($PesultArray);

$resultArray = Branch::compareArrays($fromArray, $fromCount,$toArray, $toCount); J

return $intermediate;

Add the compareArrays() method at the end of the Branch.php file, as shown below

/
private static function compareArrays($arrayl,$countl,$array2,$count2)
{
$stationCount=Stations::loadStations();
echo"<p>Array 1";
$resultCount=0;
for ($k=1;%$k<=$countl;$k++)
echo"
".$k.": ".$arrayl[$k].", ".Branch::getStationName($arrayl[$k],
$stationCount);
echo"<p>Array 2";
for ($k=1;%k<=$count2;$k++)
echo"
".$k.": ".$array2[$k].", ".Branch::getStationName($array2[$k],
$stationCount);
for ($i=1;%i<=%$countl;$i++)
{
for ($j=1;%j<=$count2;%$j++)
{
if ($arrayl[$i]==%array2[$j])
{
$resultCount++;
$resultArray[$resultCount]=$arrayl[$i];
}
}
}
echo"<p>Link points between branches";
for ($k=1;%k<=%$resultCount;$k++)

echo"
".$k.": ".$resultArray[$k].", "
.Branch::getStationName($resultArray[$k], $stationCount);iL
return $resultArray;

=
=

493

Web-based programming projects

Save the Branch.php file and copy it to the server. Run the web site. Select a journey along a single
underground line, where the start and destination stations lie on two connected branches. Click the 'find
route' button and examine the program output. Stations are listed for the start and destination branches
and any shared stations are identified as link points, as in this example.

Ealing Broadway to Perivale
Branch 1: From location = 120: To location =0

Branch 2: From location = 0: To location =0 Array 2
Branch 3: From location = 0: To location = 235
2: 121, Hanger Lane
Start station on branch 1 3- 235 Perivale
Finish station on branch 3 4 320, Greenford
5: 473,
Arrav 1 6: 311 Northolt
1: 120, Ealing Broadway 7: 161, South Ruislip
2: 205, West Acton 8: 312, Ruislip Gardens
0: 159, West Ruislip
4: 204, North Acton
5:234, East Acton (Link points betwveen branchesj
6: 295, White City 1: 477,

Return to the Branch.php file and add another method as shown below. This takes the name of a station
and obtains the equivalent stationID from the array within the branch object.

4)
private static function getStationID($stationWanted,$branch)
{
$stationID=0;
$pointCount = Branch::$branchObj[$branch]->pointCount;
for ($i=1;%$i<=$pointCount;$i++)
{
$currentStation = Branch::$branchObj[$branch]->stationName[$i];
if ($currentStation==$stationWanted)
{
$stationID=Branch: :$branchObj[$branch]->stationID[$i];
}
}
return $stationID;
\} J
}
?>

We now have the components needed to calculate the number of intermediate stations for a journey
between two connected branches of a single underground line. Return to the checkLink() method in the
Branch.php file and add the block of program code shown below.

Save the Branch.php file and copy it to the server. Run the web site and select a journey on a single
underground line between two linked branches.

494

Chapter 7: London Underground

$toCount = Branch::$branchObj[$i]->pointCount;
$toBranch=%$i;
}
}

$resultArray = Branch::compareArrays($fromArray,$fromCount,$toArray,$toCount);
$resultCount=count($resultArray);

4 $fromStationID = Branch::getStationID($fromStation,$fromBranch); A
$toStationID = Branch::getStationID($toStation,$toBranch);
$stationCount=Stations::loadStations();
$first=true;
if ($resultCount>0)

{
for ($k=1;%$k<=$resultCount;$k++)
{
$intermediatel = Branch::stationsBetween($fromStationID, E:il
$resultArray[$k], $fromBranch);
$intermediate2 = Branch::stationsBetween($resultArray[$k],
$toStationID, $toBranch);
$total = $intermediatel + $intermediate2;
$1linkPointName=Branch: :getStationName($resultArray[$k],$stationCount);
if (strlen($linkPointName)>2)
$total++;
if ($first==true)
{
$first=false;
$intermediate=$total;
}
else
if ($total<$intermediate)
$intermediate=$total;
}
}
}
else
{
echo"<p>Checking for connections between three branches...";
N J

return $intermediate;

}

The program lists the stations in each branch, and also identifies the start and finish points for the journey

segments on each of the branches. The numbers of intermediate stations are recorded, and the total

displayed in the results table.

Journey from Watford to Amersham

1: 131, Watford **#=##*==s*===***from station e 1 intermediate station found on

2GR the Watford branch

T fo station e 3 intermediate stations found on
the Amersham branch.

1: 71, Amershap =##ssskesssakss=tfom station

2:463, Chesham

3: 314, Chalfont and Latimer [1] Chf;ftgrr;tearnd

4: 464, .

5: 318, Chorlevwood [2] Amersham Watford

§: 315, Rickmanzworth [3]

7 —1'55= EEREE G FERREEBIF R R atating Choreywood Croxley

2: 309, Moor Park) _

0: 3116, Northwood Rickmansworth Moor Park

495

Web-based programming projects

Return to the checkLink() method in the Branch.php file. Program code can now be added to find routes
where the start and destination brances are linked via a third intermediate branch. Insert the block of code
shown below and continued on the next page.

else
{
echo"<p>Checking for connections between three branches...";
/” for ($i=1;$i<=$branchCount;$i++) N\

if (($location[$i][0]==0)8&&($1location[$i][1]==0))
{
echo"<p>Checking for connection via branch ".$i;
$linkArray = Branch::$branchObj[$i]->stationID;
$linkCount = Branch::$branchObj[$i]->pointCount;
$1linkBranch=$i;
$resultArrayl = Branch::compareArrays($fromArray, E:il
$fromCount, $1linkArray,$linkCount);
echo"<p>Returned RESULT fromArray to linkArray *¥ddkkkkkssxxsxxn .
$resultCountl=count($resultArrayl);
for ($k=1;%$k<=$resultCountl;$k++)
echo"
".$k.": ".$resultArrayl[$k];
$resultArray2 = Branch::compareArrays($toArray, E:il
$toCount,$linkArray,$linkCount);

echo"<p>Returned RESULT toArray to linkArray *¥¥¥idiiokkftskt .
$resultCount2=count($resultArray2);
for ($k=1;%k<=$resultCount2;$k++)

echo"
".$k.": ".$resultArray2[$k];
if (($resultCount1>0)8&&($resultCount2>0))
{ echo"<p>connection -Found *************************";

for ($a=1;%a<=%$resultCountl;$a++)
{
for ($b=1;$b<=$resultCount2;$b++)
{

echo"
Travel from ".$fromStation." on branch "
.$fromBranch."”. Link point ".$resultArrayl[$a]
." to branch ".$linkBranch." Link point ".$resultArray2[$b]
." to branch ".$toBranch.". Finish at ".$toStation;
$intermediatel = Branch::stationsBetween($fromStationID,
$resultArrayl[$a], $fromBranch);
$intermediate2 = Branch::stationsBetween($resultArrayl[$a],
$resultArray2[$b],$1inkBranch);
$intermediate3 = Branch::stationsBetween($toStationID,
$resultArray2[$b],$toBranch);
$total = $intermediatel + $intermediate2 + $intermediate3;
$1linkPointNamel=Branch::getStationName($resultArrayl[$a],
$stationCount);
if (strlen($linkPointNamel)>2)
$total++;
$1linkPointName2=Branch: :getStationName($resultArray2[$b], E:il
$stationCount);
if (strlen($linkPointName2)>2)
$total++;
if ($first==true)
{
$first=false;
$intermediate=$total;

496

Chapter 7: London Underground

if ($first==true)

$first=false;
$intermediate=$total;

}
(else)
{
if ($total<$intermediate)
$intermediate=$total;
}
echo"<p> Total intermediate stations = ".$intermediate."
";
}
}
}
}
__J Y,

return $intermediate;

Save the Branch.php file and copy it to the server. Run the web site and select a journey involving travel
from a start branch, via an intermediate branch, to a destination branch of the same underground line. An
example would be the journey from West Croydon on branch 2 of the tram network, via branch 1, to the
destination of Harrington Road on branch 3.

Birkbeck
Avenue
Road
(O Harrington Road
BRANCH 3 O Elmers E
() Arena
BRANCH 2
/ \ O Woodside
West Croydon
i R O O O O Blackhorse Lane
Reeves Corner Centrale '\.!E“ES:E'I East O Al b
Road Croydon Sandilands scombe
O O O O O O—0O O
Ampere Waddon Wandle Church George Lebanon
Way Marsh Park Strest Street Rozad ° Gravel Addnot
Lloyd Park rave ington
< BRANCH 1 ! O~ Hil Village

Coombe Lane O O

An extract from the program output is shown on the next page.

e The procedure begins by determining the branches on which the start and destination stations lie.
It is already known that there is no direct connection between these branches.

e The program tests each of the remaining branches in turn as a possible link between the start and
destination. If shared station points are found with both the start and destination branches, then a
connection is possible.

e Each set of connecting station points is considered in turn. For the example above, the journey
from West Croydon could be made by two different routes:

West Croydon - Wandle Park - Sandilands - Harrington Road
West Croydon - East Croydon - Sandilands - Harrington Road

497

Web-based programming projects

The two possible routes are considered in turn. Start and finish stations for each leg of the journey
are identified, and the number of intermediate stations counted. A provisional total is obtained for
the whole journey.

The program checks whether the branches are linked at stations or at intermediate points along the
line. If links occur at stations, then these are added to the total of intermediate stations.

When calculations are completed, the lowest total is selected from the alternative routes. This
result is displayed in the summary table.

Travel from West Croydon on branch 2. Link point 382 to branch 1 Link point 384 to branch 3.
Finish at Harrington Road

: 379, Wandle Park

: 407, Reeves Corner

: 406, Centrale

: 404, West Croydon ******kxkkkxikxsxfrom station
: 405, Wellesley Road [1]

: 382, East Croydon *******ikkikxikr*tg station

OO, WN PR

: 369, Wimbledon

: 367, Dundonald Road
449,

: 368, Merton Park

450,

: 370, Morden Road

: 371, Phipps Bridge

: 372, Belgrave Walk

: 348, Mitcham

10: 373, Mitcham Junction
11: 375, Beddington Lane
12: 376, Therapia Lane

13: 377, Ampere Way

14: 378, Waddon Marsh

15: 379, Wandle Park

16: 380, Church Street

17: 381, George Street

18: 382, East Croydon ********kxxixxkxxfrom station
19: 383, Lebanon Road [1]
20: 384, Sandilands *******xkkkkkxiixig station
21: 385, Lloyd Park

22: 395, Coombe Lane

23: 396, Gravel Hill

24: 397, Addington Village
25: 398, Fieldway

26: 399, King Henry's Drive
27: 400, New Addington

©CO~NUAWNPR

1: 384, Sandilands *********xixkxxi*from station

2: 386, Addiscombe [1]

3: 387, Blackhorse Lane [2]

4: 388, Woodside [3]

5: 389, Arena [4]

6: 390, Harrington Road **********x*ixxi*ig station
7: 391, Birkbeck

8: 392, Avenue Road

9: 393, Beckenham Road

10: 394, Beckenham Junction

Total intermediate stations = 8

498

Chapter 7: London Underground

Almost all journeys on the London underground network can be made via one, two or three branches of
any line. Itis left as a programming exercise to count the number of intermediate stations for a journey
involving four branches of an underground line if required.

We now return to the problem identified earlier for some journeys on the Circle line. The line is
topologically a loop with a tail.

link

o

e Ajourney from point A to point B could be made by travelling around the loop in either a clockwise
or anti-clockwise direction. The route passing through the least number of intermediate stations
would be chosen.

e Ajourney from point A or B to point C would first involve travelling around the loop to the link
point, clockwise or anti-clockwise depending on which route passed through the least number of
intermediate stations.

Consequently, most journeys on the Circle line require a choice to be made about the direction of travel
around the loop. This choice will be made by a circleCount() method which we will add to the Branch class
file.

Go to the Branch.php file and add lines of program code to the beginning of the countStations() method
as shown below.

public static function countStations($fromStation,$toStation,$branchCount)

{
4 N

$1lineID = Branch::$branchObj[1]->1inelD;

$lineName = Line::getLineName($lineID);

if ($lineName=='Circle')

{
echo"<p>Calculating for Circle line....";
$intermediate=Branch::circleCount($fromStation, $toStation);

}

else

_{ J

$location = Branch::locateStations($fromStation,$toStation,$branchCount);
$first=true;

Add a further bracket to close the else.. condition before the return line at the end of the method.

if ($foundRoute==false)
{

$intermediate=Branch: :checkLink($fromStation,$toStation,
$branchCount,$location);

@)

return $intermediate;

}

499

Web-based programming projects

Add the circleCount() method at the end of the Branch.php file. Save the file and copy it to the server.

-

public static function circleCount($fromStation,$toStation) A
{
$count=Branch: :$branchObj[1]->pointCount;
for ($i=1;%i<=%$count;$i++)
{
$stationID = Branch::$branchObj[1]->stationID[$i];
$stationName = Branch::$branchObj[1]->stationName[$i];
echo"
".$i.": ".$stationID.", ".$stationName;
}

return $intermediate;

Run the web site and select a journey beginning and ending on the Circle line. Click the 'find route' button.
The program will display a list of the stations in sequence along the Circle line. The order may be reversed
from the example below, depending on the direction in which the line was entered.

Shepherd’s Bush Market to High Street Kensington

Calculating for Circle line ...

- 481, Hammersmith

- 207, Goldhawk Road

290, Shepherd s Bush Market
206, Wood Lane

202, Latimer Foad

122, Ladbroke Grove

- 203, Westbourne Park

Ll bl

Sk

A loop is created by either the first or last station connecting to a link station along the line.

link link

O . - O
O finish O start

O start O finish

The next step is to identify the link station. Return to the circleCount() method in the Branch.php class
file. Add lines of code as shown below. Save the file and copy it to the server.

The method begins by noting the names of the first and last stations along the line. As the loop prints each
station name, a watch is kept for the first or last station name appearing again to create the Circle link.

500

Chapter 7: London Underground

public static function circleCount($fromStation,$toStation)
{
$count=Branch::$branchObj[1]->pointCount;

$first = Branch::$branchObj[1]->stationName[1];
$last = Branch::$branchObj[1]->stationName[$count];

for ($i=1;%i<=$count;$i++)

{
$stationID = Branch::$branchObj[1]->stationID[$i];
$stationName = Branch::$branchObj[1]->stationName[$i];
echo"
".$i.": ".$stationID.", ".$stationName;

4 if(($i>1)8&($i<$count)) ~
{

if (($stationName==$first)||($stationName==$last))
{

echo" 3k %k >k sk ok llnk *****";

$linkLocation = $i;

$1linkStationCount= $betweenStations;

$loopFirst=true;

if ($stationName==$last)

{

}
}
- } J

}

return $intermediate;

}

$loopFirst=false;

The method begins by noting the names of the first and last stations along the line. As the loop prints each
station name, a watch is kept for the first or last station name appearing again to create the Circle link.

Run the web site. Again select a journey on the circle line. Check that the link station is identified in the

station list.

7: 203, Westbourne Park — - -

2- 201 Roval Oak 39: 52, High Street Kensington
0-475. 40: 100, Notting Hill Gate

10: 125, Paddington 41: 211, Bayswater

11- 21{] Edoware Road **=## link *#%== 42: 126 Paddington
(il:zi,BakerSueet)l%i‘iﬁhi(}33209=Edg“?W¢Rﬂad)

13: 135, Great Portland Street last station in the list

Return to the Branch.php class file. Go to the start of the circleCount() method and add several variables.

public static function circleCount($fromStation,$toStation)
{
$count=Branch::$branchObj[1]->pointCount;
$first = Branch::$branchObj[1]->stationName[1];
$last = Branch::$branchObj[1]->stationName[$count];

$wanted=0;
$betweenStations=0;
$countingBetween=false;

for ($i=1;%$i<=$count;$i++)

{

501

Web-based programming projects

The next step is to identify the start and destination stations for a journey on the Circle line, and to count
the number of stations between these points. Add the lines of program code to the circleCount() method.

if ($stationName==$last)

{
$loopFirst=Ffalse;
¥
}
¥
4 if (($stationName==$fromStation)||($stationName==$toStation)) I
{

echo" ***** STATION WANTED ***x*".
$wanted++;
$wantedLocation[$wanted] = $i;

if ($wanted==1)

{
$countingBetween=true;
}
if ($countingBetween==true)
{
if (strlen($stationName)>2)
{
$betweenStations++;
echo" [".$betweenStations."]";
}
}
if ($wanted==2)
{
$countingBetween=false;
- } /

}

return $intermediate;

}

Save the Branch.php file and copy it to the server. Run the web site and select a journey on the Circle line.
Click the 'find route' button. The list of stations is again displayed, but the start and destination are
identified, as shown in the example below. A count is kept of the number of stations from the start to the
destination, as displayed in square brackets in the screen output.

Shepherd’s Bush Market to High Street Kensington

Calculating for Circle line. .

1: 481, Hammersmith

2: 297, Goldhawk Road

3: 200, Shepherd's Bush Market ***=* STATION WANTED ****= [1]

4: 296, Wood Lane [2]

52202, Latimer Road [3]

6: 122, Ladbroke Grove [4] 35 16, Sloane Square [28]

7: 293, Westbourne Park [3] 36: 55, South Kensington [29]
§: 201 Royal Oak [6] 37 268, Gloucester Road [30]
9475, 38: 484,

10: 125, Paddington [7] 30: 52, High Street Kensington ****= STATION WANTED ***** [31]
11: 210, Edgware Road ***** link ***** [§] 40: 100, Notting Hill Gate

12: 25, Baker Street [9] 41: 211, Ba';.'s'n;ter

42: 126, Paddington
43: 209, Edgware Road

502

Chapter 7: London Underground

We now have all the data necessary for calculating a shortest journey route on the Circle line. The
procedure is illustrated in the flowchart below.

For the simple case of the journey starting and finishing on the section of line outside the loop, the number
of intermediate stations has already been calculated. For journeys which occur partly or completely within
the Circle loop, we must find the journey distances in both the clockwise and anti-clockwise map directions

and choose the shortest of these.

Yes

Depart and
destination both outside
the loop?

No

l

Depart and
destination both inside the

Y

Get intermediate stations
clockwise

Get intermediate stations
anti-clockwise

Y

Select smaller number of
intermediate stations

loop?

Yes

Calculate intermediate stations

No

Separate the journey into
sections inside and outside
the loop

Y

Get intermediate stations
clockwise

Get intermediate stations
anti-clockwise

Y

Select smaller number of
intermediate stations

Add intermediate stations for
section outside the loop

503

Web-based programming projects

Return to the circleCount() method. Add lines of program code which will count the number of stations
around the Circle loop, ignoring non-station route points which were added to make the map display more
accurate.

if ($wanted==2)

{
$countingBetween=false;
}
}
4 $loopStations=0; N\

$countinglLoop=Ffalse;
if ($loopFirst==true)
{
$a=1;
$b=%$1linkLocation;
}

else

$a=%$linkLocation;
$b=$count;

}

for ($i=%$a;$i<=%$b;%$i++)

{
$stationName = Branch::$branchObj[1]->stationName[$i];
if (strlen($stationName)>2)
{

}

$loopStations++;

}
_ echo"<p>Loop station count = ".$loopStations; Y,

return $intermediate;

Save the Branch.php file and copy it to the server. Run the web site and select a journey on the Circle line.
Click the 'find route' button. The number of stations around the Circle loop should be found and displayed.
Check that the count is correct.

41: 211, Bayvswater
42: 126, Paddington
43: 209, Edgware Foad

Loop station count = 28

The next stage is to split a selected journey into sections inside and outside the Circle loop. This can be
done because we earlier recorded the position of the link station if it occurred between the start and finish
of a journey along the Circle line.

Return to the circleCount() method and add the lines of program code below.

504

Chapter 7: London Underground

}

echo"<p>Loop station count = ".$loopStations;
4 $insidelLoop=0;)

$outsidelLoop=0;
if ($loopFirst==true)

{

if ($linkStationCount==0)
$outsideLoop=$betweenStations;
else
if ($linkStationCount==$betweenStations)
$insideLoop=$betweenStations;
else

{

$insideLoop=$1linkStationCount+1;
$outsideLoop=$betweenStations-$linkStationCount;
}
}
if ($loopFirst==false)
{
if ($linkStationCount==0)
$insideLoop=$betweenStations;
else
if ($linkStationCount==$betweenStations)
$outsideLoop=$betweenStations;
else
{
$outsideLoop=$linkStationCount+1;
$insidelLoop=$betweenStations-$linkStationCount;
}
}
echo"<p>Outside loop = ".$outsideloop;
_ echo"<p>Inside loop = ".$insideloop; Y,

return $intermediate;

Save the Branch.php file and copy it to the server. Select a journey on the Circle line which occurs partly
inside and partly outside the Circle loop, such as from Ladbroke Grove to Euston Square.

Paddington Edgware Road Marylebone \Baker GreatPortiand Euston

Street Street

Euston
Square

Warren Street

o Royal Oak Regent’s Park Farringdor]
Westbourne Park Goodge gussew g
O Ladbroke Grove Bayswater Bond Aretard Sroct o

Click the 'find route' button and examine the program output. The route has been split into two sections.
Counts have been made to the link station of Edgware Road. The results are Inclusive of the end stations of
each journey section. Check that the values are correct.

Ladbroke Grove to Euston Square

Outside loop =3
Inside loop =4

505

Web-based programming projects

The final step is to calculate the number of stations for travel in the opposite direction within the Circle
loop. The smaller number of intermediate stations can then be selected. Any additional stations for a
section of journey outside the loop can then be added.

echo"<p>Outside loop = ".$outsidelLoop;
echo"<p>Inside loop = ".$insideloop;

/’V if ($insidelLoop==0) ‘\\
$intermediate=$outsidelLoop-2;
else

{

$intermediatel=$insidelLoop-2;

$intermediate2=($loopStations-$insidelLoop);

if ($intermediatel<$intermediate2)
$intermediate=$intermediatel;

else
$intermediate=$intermediate2-1;

if ($outsidelLoop>=2)
$intermediate=$intermediate+($outsidelLoop-1);

_ }

return $intermediate;

Save the Branch.php file and copy it to the server. Select a variety of journeys on the Circle line, such as
the journey from Latimer Road to Notting Hill Gate in this example.

Fam_\:‘, Paddington Edgware Road Marylebons
laida Vala Warwick
Avenue
(:} Royal Oak
Westbourne Park
) Ladbroke Grove Bayswater
Q) Latimer Road Marble Arch
‘White Shepherd s Maoltin
City Bush Hill GE?[&
—CF L
et Lang

In each case, check that the number of intermediate stations is displayed correctly in the summary table.
The calculation assumes that a journey joining the Circle loop may then continue in either a clockwise or
anti-clockwise map direction.

From station To station First line | First change | Second line | Second change | Third line | Map pixels | Intermediate

Latimer Road | Notting Hill Gate || Circle 7

Return to the Branch.php file. All 'echo’ lines can now be removed or de-activated, so that just the results
table is output. Save the Branch.php file and copy it to the server.

Go now to the findRoute.php file and identify the section of the program where the results table is output.
We will extend the program to output the total numbers of intermediate stations for journeys involving
one change of underground line. This will be done by calling the countStations() method for each separate
leg of the journey, then adding the numbers of intermediate stations. One additional station will be added
to the total, to include the station where the traveller changes underground line.

506

Chapter 7: London Underground

echo"<td>".$routeResult[$i][6]."</td>";
echo"<td>".$routeResult[$i][7]."</td>";
echo"<td>".$routeResult[$i][8]."</td>";
4 if ($direct==false) A
{
$1lineID= Line::getIDfromName($routeResult[$i][3]);
$1lineName=Line::getLineName($1ineID);
$branchCount=Branch::loadBranch($1inelID);
$firstCount = Branch::countStations($routeResult[$i][1], E:il
$routeResult[$i][4],$branchCount,$lineName);
$lineID= Line::getIDfromName($routeResult[$i][5]);
$lineName=Line::getLineName($1linelID);
$branchCount=Branch: :loadBranch($1lineID);
$secondCount = Branch::countStations($routeResult[$i][4], E:il
$routeResult[$i][2],$branchCount,$lineName);
$total = $firstCount+$secondCount+1;
$routeResult[$i][9]=%total;
_ J
echo"<td>".$routeResult[$i][9]."</td>";
}
}
echo"</table>";

Save the findRoute.php file and copy it to the server.

Run the web site. Select various journeys requiring one change of underground line, such as the journey
from Notting Hill Gate to Russell Square in the example below. Check that intermediate stations have been
calculated correctly for the route options displayed in the results table.

From station To station First line First change Second line | Second change | Third line | Map pixels | Intermediate
Notting Hill Gate || Russell Square | Central Holborn Piccadilly 499 7
Notting Hill Gate || Russell Square | Circle South Kensington Piccadilly 610 10
Notting Hill Gate || Russell Square || Circle King's Cross St Pancras || Piccadilly 005 7
Notting Hill Gate || Russell Square | District | South Kensington Piccadilly 610 10

Return to the findRoute.php file and add lines of program code to calculate the numbers of intermediate
stations for journeys involving two changes of underground line, as shown on the next page.

The countStations() method is now called three times for the three legs of the journey.

Save the findRoute.php file and copy it to the server.

Run the web site and select a variey of longer journeys requiring two changes of underground line. In each

case, check that correct totals of intermediate stations are given for each route option.

From station | To station || First line | First change | Second line | Second change | Third line || Map pixels | Intermediate
1 | Maida Vale Pontoon Dock || Bakerloo || Oxford Circus | Central Bank DLR 1554 20
9 || Maida Vale Pontoon Dock | Bakerloo | Baker Street || Jubiles Canning Town | DLR 1566 17
10 | Maida Vale Pontoon Dock | Bakerloo | Baker Street || Jubilee Canary Wharf | DLE 1565 28
17 || Maida Vale Pontoon Dock || Bakerloo || Charing Cross | Nerthern Bank DLR 1608 24

507

Web-based programming projects

if ($direct==false)

{
$lineID= Line::getIDfromName($routeResult[$i][3]);
$1lineName=Line::getLineName($1ineID);
$branchCount=Branch::loadBranch($1inelD);
$firstCount = Branch::countStations($routeResult[$i][1],

$routeResult[$i][4],$branchCount,$lineName);

$lineID= Line::getIDfromName($routeResult[$i][5]);
$1lineName=Line: :getLineName($1linelID);
$branchCount=Branch::loadBranch($1inelID);

(: if (strlen($routeResult[$i][7])<1) :]

{

$secondCount = Branch::countStations($routeResult[$i][4],
$routeResult[$i][2],$branchCount,$lineName);
$total = $firstCount+$secondCount+1;
$routeResult[$i][9]=%total;
4 } N

else

{

$secondCount = Branch::countStations($routeResult[$i][4],
$routeResult[$i][6],$branchCount,$lineName);

$1lineID= Line::getIDfromName($routeResult[$i][7]);

$lineName=Line::getLineName($1ineID);

$branchCount=Branch: :1loadBranch($1ineID);

$thirdCount = Branch::countStations($routeResult[$i][6],
$routeResult[$i][2],$branchCount,$lineName);

$total = $firstCount+$secondCount+$thirdCount+2;

$routeResult[$i][9]=%total;

_ } Y,

}
echo"<td>".$routeResult[$i][9]."</td>";

}
}

echo"</table>";

We can now move ahead to find shortest journey option, based on the number of intermediate stations.
Return to the findRoute.php file and add lines of program code as shown in the two boxes below.

echo"<td>".$routeResult[$i][9]."</td>";
}
}
echo"</table>";

/’7$first=true;
for ($i=1;%i<=%$routeResultCount;$i++)

if (($resultCount<=4)||($routeResult[$i][8]>9))

if ($first==true)

{
$min=9%$i;
$minStations=$routeResult[$i][9];
$first=Ffalse;
}
else
- ¢ J

508

Chapter 7: London Underground

else
{
(if ($routeResult[$i][9]<$minStations) A
{
$min=%i;
$minStations=$routeResult[$i][9];
}
}
}
\} J

echo"<form method=post action='index.php?message=".$message.""'>";
echo"<p><input type=submit value='continue'>";
echo"</form>";

?>

</body>

</html>

This block of code selects the routeResult[] array value with the lowest number of intermediate stations
recorded.

We now use data from the routeResult[] array to create a text string message2 which will output the
preferred route for the traveller. Add the lines of program code shown below, then save the
findRoute.php file and copy it to the server.

if ($routeResult[$i][9]<$minStations)

{
$min=%i;
$minStations=$routeResult[$i][9];

}

}
}
}
/>if ($direct==true) A
{
$message2="Travel from ".$routeResult[$min][1]." to " E:il
.$routeResult[$min][2]." on the ".$routeResult[$min][3]." line.";
}
else
{
$message2="Travel from ".$routeResult[$min][1]." to " Eiil
.$routeResult[$min][4]." on the ".$routeResult[$min][3]." line.";
if (strlen($routeResult[$min][7])<1)
{
$message2=$message2."
Travel from ".$routeResult[$min][4]." to " [:il
.$routeResult[$min][2]." on the ".$routeResult[$min][5]." line.";
}
else
{
$message2=$message2."
Travel from ".$routeResult[$min][4]." to " E:il
.$routeResult[$min][6]." on the ".$routeResult[$min][5]." line.";
$message2=$message2."
Travel from ".$routeResult[$min][6]." to " E:il
.$routeResult[$min][2]." on the ".$routeResult[$min][7]." line.";
}
}

\>echo"<p>Message 2: ".$message2; y
echo"<form method=post action='index.php?message=".$message.""'>";
echo"<p><input type=submit value='continue'>";
echo"</form>";

509

Web-based programming projects

Run the web site. Carry out tests with a variety of journeys, either using a single underground line or
requiring one or two changes of line. In each case, check that message2 correctly describes the route
option with the least number of intermediate stations.

From station To station | First line First change Second line | Second change | Third line | Map pixels | Intermediate
1 || Enightsbridge || Oxford Circus || Piccadilly || Piccadilly Circus Bakerloo 282 3
2 || Knightsbridge | Oxford Circus || Piccadilly | Helborn Central 508 7
3 || Enightsbridge | Oxford Circus || Piccadilly || Green Park Victoria 203 2
4 || Knightsbridge | Oxford Circus || Piccadilly || Eling's Cross St Pancras || Victoria 696 10

Meszage 2: Travel from Knightshridge to Green Park on the Piccadilly line.

Travel from Green Park to Oxford Circus on the Victoria line.

Return to the findRoute.php file. Add a similar block of program code to select the journey option with the
second-least number of intermediate stations. This block will only operate if more than one route option is
present in the results table.

echo"<p>Message 2: ".$message2;

{

_ J

/ if ($routeResultCount>1)

$routeResult[$min][8]= -1;
$o0ldMin=$min;

$first=true;

for ($i=1;$i<=$routeResultCount;$i++)

if (($direct==true)||(($resultCount<=4)||($routeResult[$i][8]>0)))

if (($first==true)&&($i!=$0ldMin))

{
$min=9%$i;
$minStations=$routeResult[$i][9];
$first=false;
}
else
if (($routeResult[$i][9]<$minStations)&&($i!=$01dMin))
{
$min=9%i;
$minStations=$routeResult[$i][9];
}
}

echo"<form method=post action='index.php?message=".$message.
echo"<p><input type=submit value='continue'>";
echo"</form>";

>

Continuing to work in the findRoute.php file, add the block of program code below. This creates a string
message3 describing an alternative route which the traveller might take.

Save the findRoute.php file and copy it to the server.

510

Chapter 7: London Underground

if ($routeResult[$i][9]<$minStations)

{
$min=9%$i;
$minStations=$routeResult[$i][9];
}
}
}
if ($direct==true))
{
$message3="Travel from ".$routeResult[$min][1]." to " E:il
.$routeResult[$min][2]." on the ".$routeResult[$min][3]." line.";
}
else
{
$message3="Travel from ".$routeResult[$min][1]." to " Eiil
.$routeResult[$min][4]." on the ".$routeResult[$min][3]." line.";
if (strlen($routeResult[$min][7])<1)
{
$message3=$message3."
Travel from ".$routeResult[$min][4]." to " E:il
.$routeResult[$min][2]." on the ".$routeResult[$min][5]." line.";
}
else
{
$message3=$message3."
Travel from ".$routeResult[$min][4]." to " E:il
.$routeResult[$min][6]." on the ".$routeResult[$min][5]." line.";
$message3=$message3."
Travel from ".$routeResult[$min][6]." to " [:il
.$routeResult[$min][2]." on the ".$routeResult[$min][7]." line.";
}
}
__ echo"<p>Message 3: ".$message3; Y,

}

echo"<form method=post action='index.php?message=".$message.
echo"<p><input type=submit value='continue'>";
echo"</form>";

>

Run the web site. Again carry out tests with a variety of journeys, either on a single underground line or
with one or two changes of line. In each case, check that message3 gives a correct second journey option
if alternative routes are shown in the results table.

From station To station | First line First change Second line | Second change || Third line | Map pixels | Intermediate
1 | Enightsbridge || Oxford Circus || Prccadilly || Piecadilly Circus Bakerloo 202 3
2 || Knightsbridge || Oxford Circus | Piccadilly | Holborn Central 508 7
3 || Knightsbridge || Oxford Circus | Piccadilly | Green Park Victoria 203 2
4 || Enightsbridge | Oxford Circus | Piccadilly | King's Cross St Pancras || Victoria 696 10

Meszage 2: Travel from Knightsbridge to Green Park on the Piccadilly line.
Travel from Green Park to Oxford Circus on the Victoria line.

Meszage 3: Travel from Knightsbridge to Piccadilly Circus on the Piccadilly line.
Travel from Piccadilly Circus to Oxford Circus on the Bakerloo line.

This completes the route finding procedure in the findRoute.php file. We can now transfer the results back
to the main web page.

511

Web-based programming projects

Go to the section of findRoute.php below the results table, where the 'continue' button is displayed. Insert
/* *] characters to de-activate the <form> block as shown below. Add a header command which will
return the program to the index page, carrying the message data within the URL.

else
{
$message3=$message3."
Travel from ".$routeResult[$min][4]." to "
.$routeResult[$min][6]." on the ".$routeResult[$min][5]." line."
$message3=$message3."
Travel from ".$routeResult[$min][6]." to "
.$routeResult[$min][2]." on the ".$routeResult[$min][7]." line."
}
}

echo"<p>Message 3: ".$message3;

}

C s~)
echo"<form method=post action='index.php?message=".$message.""'>";
echo"<p><input type=submit value='continue'>";
echo"</form>";

*/
header('Location: index.php?message="'.$message. '&message2=" Eiil
.$message2. '&message3=".$message3);
?>
</body>
</html>

Save findRoute.php and copy it to the server.

Go now to the index.php file. Add lines of code near the beginning to collect the message strings from the
URL when the program returns from findRoute.php.

$stationList=Stations::loadStationList();
$listCount =sizeof($stationList);
$message=$ REQUEST['message'];

$message2=$% REQUEST['message2'];
$message3=$ REQUEST['message3'];

if (!isset($message))

$message=" ";
if (!isset($message2))
$message2=" ";
if (!isset($message3l))
$message3=" ";
?>
<html>

Continuing to work in the index.php file, move down to the <script> block near the start of the <body>
section. Add lines of code to convert the message strings to JavaScript variables.

var inputCount=0;
message=<? echo json_encode($message); ?>;

message2=<? echo json_encode($message2); ?>;
message3=<? echo json_encode($message3); ?>;

function setup()

512

Chapter 7: London Underground

Move down to the setup() function. Locate the line:

textArea.html(message);

and replace it with the lines of code below.

}

textArea.attribute("rows","24");
textArea.attribute("cols","40");

message = message.replace(/
/g,'\n\r');

\-

message2 = message2.replace(/
/g,'\n');
message3 = message3.replace(/
/g,"'\n");

if (textWidth(message3)>10)
{

textArea.html(message+'\r\n\nSuggested route:\n'+message2
+"\r\n\nAlternative route:\n'+message3);

}

else

textArea.html(message+'\r\n\nSuggested route:\n'+message2);

function draw()

{

Save index.php and copy it to the server.

Run the web site. Select a variety of journeys involving one, two or three underground lines. In each case,
check that correct journey instructions are given in the information panel.

Moorgate Liverpoo
Chancery Lane Street
Ban Aldga
Covent Garden
StPaul's
pster Square Monument]

Cannan Street .
Towear

F Mansion House Hil
Blackfriars
Temple
mbankment London Bermon

Bridge

O

Southwark

Motting Hill Gate to Russell Square

Suggested route:

Travel from Motting Hill Gate to Holoor on the
Central line.

Travel from Holborn to Russell Sguare on the
Piccadilly line.

Alternative route:

Travel from Motting Hill Gate to King's Cross St
Pancras on the Circle line.

Travel from King's Cross 5t Pancras to Russell
Square on the Piccadilly line.

Further development

This has been quite a substantial project covering a complex transport network. Similar applications could
be developed for route finding by public transport in other major cities. Journeys might combine rail, tram
and bus networks.

The project has focussed on finding shortest routes in terms of the numbers of intermediate stations

between the start and destination. In many transport networks, this approach may be unsuitable. It could
be better to compare journeys according to actual distance travelled, or total journey time including time
spent waiting for connections.

513

Web-based programming projects

Summary of the object structures
Staff

Staff

- stafflD: integer
A Staff object contains the stafflD which is set as an auto- | _ sername: imng

number, along with the user name and password. The - password: string
public method checkPassword() calls the private method

checkUser() to examine each Staff object in turn, then + constructor(userName, password)
returns an overall true/false result depending on whethe | - checkUser(userName, password): boolean
valid log-in details were found. + checkPassword(userName, password): boolean

Station

Objects in this class represent locations through which underground lines pass. They may be actual
stations, or may be intermediate route points added to improve the accuracy of the map display.

Attributes include: the x- and y-coordinates on the underground map, the name for a station, and a variable
which specifies the caption display position relative to the station symbol.

Methods are provided to add a new station point, load all station objects for display on the map, edit or
delete a station object. Additional methods obtain a list of station names for insertion into a drop-down
selection box, and calculate the distance in screen pixels between two station points on the map.

Line

Objects represent the London Underground lines. The attributes provide information for displaying the line
on the map, including the line name, standard colour code, and whether it is displayed as a single solid line
or as a double outline.

Methods are provided to add lines, and to load all line objects for use in drawing the map. Additional
methods use line objects to create key displays alongside or below the map, and allow the linelD number to
be obtained from the line name or vice versa.

RoutePoint

Objects represent instances of particular underground lines passing through particular station points. The
route points along each underground line branch are organised as a linked list, connected by pointer and
backpointer values which allow the sequence to be followed in either direction. Since several underground
lines may run in parallel between stations, a variable specifies the relative position where the line should be
drawn on the map to avoid obscuring other lines.

Methods are provided to add or delete route points, and to load all route points so that underground lines
can be displayed on the map. Methods allow the updating of pointer and backpointer values, which is
necessary when changes are made to the linked lists. Methods are included for reversing the order of
route points within a linked list, which may be required if additional points are added to the list.

The stationList() method outputs the names of all stations on a specified underground line, to allow a
search to be made for a journey route.

Branch

Objects represent the station points along branches of underground lines. Attributes include the linelD, an
identification number for the branch within that line, and arrays containing the stationID values and station
names in sequence along the branch.

The loadBranch() method loads station sequences for all branches of a specified underground line.
Methods are provided for obtaining a station name from the stationID value, and vice versa.

514

Chapter 7: London Underground

The countStations() method supervises the calculation of the number of intermediate stations between
two specified station points on the same underground line. This in turn calls various methods to check for
connections when the specified stations lie on different branches of the underground line. A special case is
the circleCount() method, which makes calculations in both directions of travel around the loop of the
Circle line and chooses the journey option with least intermediate stations.

Station

+ stationObj: array of Station objects
+ station|D: integer

+ stationName: string

+ Xpos: integer

+ ypos: integer

+ position: integer

+ constructor(stationID, stationName, xpas, ypos, position)

+ addStation(stationName, xpos, vpos, position
+ loadStations(): array of Station objects
+ editStation(stationID, stationName, xpos
+ deleteStation(stationID

+ |oadStationList(): array of strin

+ getPixels(stationName, stationName): integer

0S, position

Line

+ lineObj: array of Line objects
+ linelD: integer

+ lineName: string

+ colourCode: string

+ solid: boolean

+ constructor(linelD, lineName, colourCode, solid)

+ addLine(lineName, colourCode, solid)
+ loadLines(). array of Line objects

+ lineList(lineCount]

+ lineList2(lineCount

+ getiDfromName(lineName): integer

+ getLineName(linelD): strin

1.n

RoutePoint

+ pointObj: array of RoutePoint objects
+ routePointID: integer

+ linelD: integer

+ stationlD: integer

+ pointer: integer

+ backpointer: integer

+ position: integer

+ constructor(routePointID, linelD, stationID, pointer, hackpointer, position)
+ addRoutePoint(linelD, stationlD, pointer, backpointer, position)

+ |loadPoints(): array of RoutePoint objects

+ deleteRoutePoint(routePointPointID

+ stationList(linelD): array of string

+ updatePointer(routePointID, pointer

+ updateBackPointer(routePointlD, backpointer)

+ getPointerFromRoutePoint{routePointID): integer

+ getBackpointerFromRoutePoint(routePointID): integer

+ reverseSequence(routePointlD

+ reverseBacksequence(routePointiD)

Branch

+ branchObj: array of Branch objects
- branchiD: integer

- linelD: integer

- stationID: array of integer

- stationName: array of string

- pointCount; integer

+ constructor(branchiD, linelD. stationlD, stationName, pointCount)

+ loadBranch(line|D): array of Branch objects
- getStationName(station|D, stationCount): string
- getStation|D(stationName, branchindex):integer

+ countStations(stationName, stationName, branchCount): integer

+ circleCount(stationName, stationName): integer

+ checkLink(stationName, stationName, array of stationID): integer

- compareArrays(array of stationID, arrayCount, array of stationlD
arrayCount): array of integer

+ locateStations(stationName, stationName. branchCount): array of integer

+ stationsBetween(stationID, stationID, branchiD

515

