
 168

TEN

Sorting

In this chapter we will look at various ways in which sorting might be used

in programs. To begin with, let's see how a series of words could be

arranged into alphabetical order by the computer...

Alphabetical sort

Set up a new directory SORT and save a Delphi project into it. Use the

Object Inspector to Maximize the form, and drag the grid to nearly fill the

screen.

Add a string grid and set the properties:

 FixedCols 0

 ColCount 1

 FixedRows 0

 RowCount 10

 DefaultColWidth 100

 Options:

 goEditing True

 ScrollBars None

Place a button alongside, with the caption 'sort'. When words are typed into

the string grid, these will be stored in an array 'word' ready for sorting. Set

up the array in the public declarations section:

 169

public

 { Public declarations }

 word:array[0..9] of string;

 end;

We now need a procedure to transfer entries from the string grid into the

word array. Click on the string grid then press ENTER to bring up the

Object Inspector. Click the Events tab, then double-click alongside

'OnKeyUp'. Add lines to the event handler procedure:

procedure TForm1.StringGrid1KeyUp(Sender:

 TObject; var Key: Word;Shift: TShiftState);

var

 n:integer;

begin

 n:=stringgrid1.row;

 word[n]:=stringgrid1.cells[0,n];

end;

Compile and run the program to check that text can be entered in the string

grid, then return to the Delphi editing screen.

The objective of the program is to input a series of words, such as: one, two,

... nine, ten, then press the 'sort' button. The computer should then redisplay

the words in alphabetical order.

The technique we will use is called a 'bubble sort'. This is illustrated by the

diagrams on the next page:

 170

Bubble sort algorithm

As an example, we will sort the words: train, bus, car, ship into alphabetical

order.

First pass through the data

The algorithm begins by comparing the top word with the word below it. If

the words are already in correct order then no action is taken, otherwise

their positions are swapped. In this case, 'bus' should come before 'train'

alphabetically, so a swap is necessary.

The process is repeated, comparing the top word with words in each of the

other positions in turn. No exchange is necessary between the words 'bus'

and 'car', or between 'bus' and 'ship'.

At the end of the first pass through the data we have brought the word 'bus'

up to the top of the list where it should be in the alphabetical sequence.

Notice, however, that the other words are not yet in correct order.

Second pass through the data

The objective of the second pass through the data is to bring the correct

word into the second position in the alphabetical sequence. The word 'bus'

is already in the right place so this takes no further part in the sorting.

The second pass begins by comparing 'train' and 'car'; these need to be

exchanged. The final comparison is between 'car' and 'ship', but no

exchange is needed this time.

At the end of the second pass we have the words 'bus' and 'car' in the correct

two positions at the top of the list.

train

bus

car

ship

bus

train

car

ship

bus

bus

train

car

car

train

ship

ship

bus

train

car

ship

bus

train

car

ship

bus

car

train

ship

 171

Third pass through the data

One final pass through the data is needed to compare the bottom two words

'train' and 'ship'. These are exchanged to produce the final sorted sequence.

The 'bubble sort' gets its name from the way each item of data 'bubbles' its

way up to the top of the list in turn.

We must now think about how the bubble sort algorithm is written as a

section of computer program. Notice that there will be two loop structures

involved - an outer loop to carry out the correct number of passes through

the data, and an inner loop which operates each time to make the set of

comparisons between words in the list.

There is always one less pass through the data than the number of data items

to be sorted. In our example above, once three of the words are in their

correct positions then the fourth word must also be in the right place, so no

fourth pass through the data is needed.

Go to the Delphi editing screen and double-click the 'sort' button to create

an event handler. Add the lines of program to carry out the bubble sort:

procedure TForm1.Button1Click(Sender: TObject);

var

 i,j:integer;

 temp:string;

begin

 for i:=0 to 8 do

 for j:=i+1 to 9 do

 begin

 if word[j]<word[i] then

 begin

 temp:=word[i];

 word[i]:=word[j];

 word[j]:=temp;

 end;

 end;

 for i:=0 to 9 do

 stringgrid1.cells[0,i]:=word[i];

end;

bus

car

train

ship

bus

car

ship

train

 172

Compile and run the program. Enter the words 'one'..'ten' then press the

'sort' button. Check that the words are sorted into correct alphabetical

order. Try entering other sequences of words in the string grid and

sorting them.

Before leaving this program, let's look in more detail at how the

program works. The structure is shown more clearly if we carry out a

block analysis:

 for i:=0 to 8 do

 for j:=i+1 to 9 do

 begin

 if word[j]<word[i] then

 begin

 temp:=word[i];

 word[i]:=word[j];

 word[j]:=temp;

 end;

 end;

 for i:=0 to 9 do

 stringgrid1.cells[0,i]:=word[i];

outer loop for each pass through the data

inner loop to carry out the

comparisons between words

instructions for

swapping a pair of

words if they are

not in the correct

order

loop to display the sorted words

 173

Let's examine the section of program which carries out the swapping:

 if word[j]<word[i] then

 begin

 temp:=word[i];

 word[i]:=word[j];

 word[j]:=temp;

 end;

The loop counter variables i and j specify which words in the array are

currently being compared, for example:

If they are not in the correct positions then they will need to be swapped,

but it would not be sufficient to do this with the lines of program:

word[i]:=word[j];

word[j]:=word[i];

The first line would copy the word 'bus' from box j into box i, then the

second line would copy 'bus' back from box i into box j.

Instead of exchanging the words, we would simply end up with the word

'bus' in both array boxes! To get around this problem we use a

triangular exchange method. This involves storing a word in a

temporary memory location, so that it can't be overwritten before

reaching its final destination:

car

word[i]

bus

word[i]

car

word[i]

bus

word[j]

bus

word[j]

bus

word[j]

 temp

 temp:=word[i] word[j]:=temp

 word[i]:=word[j];

word[i]:=word[j]

 174

Using parallel arrays

Often in programs we need to keep more than one piece of data for each

item entered, for example: the description and price of products in a

warehouse. This may be done using parallel arrays:

Two separate arrays are used to hold the descriptions of the products and the

prices, but array boxes with the same numbers refer to the same item - for

example: product 2 (the stereo) has price 2 (£388.00).

If data in parallel arrays is sorted, it is very important that entries in both

arrays are moved simultaneously. Supposing we wished to sort the product

information into alphabetical order, the corresponding prices would also

need to move:

We will explore how to sort parallel arrays in the next program:

Video shop

A shop hires out videos of popular

films. For each video, details are kept of :

 title

 hire charge

 year produced

A program is required which can sort the information according to

any of these categories of data.

television

stereo

video recorder

microwave oven

234.50

388.00

294.00

178.99

1

2

3

4

1

2

3

4

product price

microwave oven

stereo

television

 video recorder

178.99

388.00

234.50

294.00

1

2

3

4

1

2

3

4

product price

 175

Set up a new directory VIDEO and save a Delphi project into it. Use the

Object Inspector to maximize the form, and drag the grid to nearly fill the

screen.

Add a string grid to the form and set the properties:

 DefaultColWidth 100

 ColCount 3

 FixedCols 0

 RowCount 9

 Options:

 goEditing True

 ScrollBars None

Drag the first column so that it is twice as wide as the other columns.

Put three buttons above the string grid with the captions 'sort by title', 'sort

by hire charge', and 'sort by year'.

Double-click on the dotted grid of the form to produce an event handler,

then add lines to write captions for the string grid columns:

procedure TForm1.FormCreate(Sender: TObject);

begin

 stringgrid1.cells[0,0]:='Title';

 stringgrid1.cells[1,0]:='Hire charge';

 stringgrid1.cells[2,0]:='Year';

end;

 176

When data is entered, this will be stored in three parallel arrays. Set these

up in the 'public declarations' section:

 public

 { Public declarations }

 title: array[1..8] of string;

 charge: array[1..8] of real;

 year: array[1..8] of integer;

 end;

Notice how the type of variable depends on the data which will be entered:

 'title' will be text, so is stored as a string

 'charge' will be a decimal number representing pounds and pence,

so is stored as real

 'year' will be a whole number, so is stored as an integer.

Click on the string grid and press ENTER to bring up the Object Inspector.

Click the Events tab, then double-click alongside OnKeyUp to produce an

event handler procedure. Add the lines of program to transfer data from the

string grid to the arrays:

procedure TForm1.StringGrid1KeyUp(Sender:

 TObject;var Key: Word; Shift: TShiftState);

var

 x,y:integer;

begin

 x:=stringgrid1.col;

 y:=stringgrid1.row;

 case x of

 0: title[y]:=stringgrid1.cells[0,y];

 1: begin

 if stringgrid1.cells[1,y]='' then

 charge[y]:=0

 else

 charge[y]:=

 strtofloat(stringgrid1.cells[1,y]);

 end;

 2: begin

 if stringgrid1.cells[2,y]='' then

 year[y]:=0

 else

 year[y]:=

 strtoint(stringgrid1.cells[2,y]);

 end;

 end;

end;

 177

The procedure begins by setting the variables x and y to be the column and

row where data has just been entered:

 x:=stringgrid1.col;

 y:=stringgrid1.row;

A CASE command is then used to transfer the data into one of the three

arrays, depending on the column where the entry occurred:

 case x of

 0: {store data in the title array}

 1: {store data in the charge array}

 2: {store data in the year array}

 end;

Entries in the string grid need to be converted to real numbers for the

charge array, or integers for the year array.

Compile and run the program. Check that the column headings are

displayed correctly and that data can be typed into the string grid. Test the

error trapping for decimal numbers in the 'hire charge' column and whole

numbers in the 'year' column, then return to the Delphi editing screen.

 178

The next step is to write procedures to carry out the sorting. We will deal

with the alphabetical sort of the titles first:

Double-click the 'sort by title' button to create an event handler, then add the

lines of program:

procedure TForm1.Button1Click(Sender: TObject);

var

 i,j:integer;

 temptitle:string;

 tempcharge:real;

 tempyear:integer;

begin

 for i:=1 to 7 do

 for j:=i+1 to 8 do

 begin

 if title[j]<title[i] then

 begin

 temptitle:=title[i];

 tempcharge:=charge[i];

 tempyear:=year[i];

 title[i]:=title[j];

 charge[i]:=charge[j];

 year[i]:=year[j];

 title[j]:=temptitle;

 charge[j]:=tempcharge;

 year[j]:=tempyear;

 end;

 end;

 for i:=1 to 8 do

 begin

 stringgrid1.cells[0,i]:=title[i];

 stringgrid1.cells[1,i]:=

 floattostrf(charge[i],ffFixed,8,2);

 stringgrid1.cells[2,i]:=inttostr(year[i]);

 end;

end;

This is very similar to the sort procedure we used earlier in the chapter, but

notice that three temporary variables are needed: temptitle, tempcharge and

tempyear.

If the two titles being compared are not in correct alphabetical order, a

triangular exchange is carried out with the titles plus the corresponding hire

charge and year entries.

 179

After the sorting is completed, the final loop copies the data back into the

string grid in its new positions. The real numbers in the charge array and

the integers in the year array need to be converted to strings before being

displayed.

Compile and run the program. Enter test data and check that the

alphabetical sorting by title works correctly. When a position change

occurs, the complete set of title, hire charge and year entries should move

as a group:

Return to the Delphi editing screen. Double-click the 'sort by hire charge'

button to create an event handler.

Use the Edit/Copy/Paste facility to copy the entire contents of the 'sort by

title' ButtonClick procedure into the one just created for the 'sort by hire

charge' button. The only change that needs to be made is the comparison

line:

 for j:=i+1 to 8 do

 begin

 if charge[j]<charge[i] then change only this line

 begin

 temptitle:=title[i];

 tempcharge:=charge[i];

 180

Now double-click the 'sort by year' button to create an event handler.

As before, use the Edit/Copy/Paste facility to copy the entire contents of

the 'sort by title' ButtonClick procedure into the one just created for the 'sort

by year' button. Only change the comparison line:

 for j:=i+1 to 8 do

 begin

 if year[j]>year[i] then change only this line

 begin

 temptitle:=title[i];

 tempcharge:=charge[i];

Compile and test the completed program. It should be possible to sort the

entries into:

 alphabetical order of title

 ascending order of hire charge with the cheapest video at the top

 descending order of year, with the most recent film at the top

example of sorting by year

 181

For the final project in this chapter we will tackle a more complicated

program which again involves sorting of data:

Washing-up liquid testing

A consumers' organisation carries out tests on different brands of

washing-up liquid, to find which is the best value for money. The

tests involve preparing a large supply of identical greasy plates, then

seeing how many of the plates can be washed with a single container

of each brand of liquid. You are asked to produce a computer

program to analyse the results of the tests and list the brands in order

from best value to worst value.

You may assume that the number of brands to be tested will be

between 2 and 8.

To start this program, set up a new directory WASHUP and save a Delphi

project into it. Use the Object Inspector to maximize the form, then drag

the grid to nearly fill the screen.

The strategy we can use is:

 ask how many brands of liquid are being tested

 set up a string grid with the appropriate number of rows

 input the brand name, price for a container of liquid, and the number

of plates which can be washed

 calculate for each brand the cost of washing 100 plates and display this

information in the string grid

 sort the brands according to the cost of washing 100 plates, with the

lowest cost brand at the top of the list as the best value.

A flowchart for this sequence is given on the next page.

At the top of the form put a panel. Use the Object Inspector to delete the

caption from the panel, then add a spin edit component:

 182

Flowchart for the washing up liquid program:

start

set up string grid with correct number of rows

YES

NO entry

completed?

select first washing up

liquid

calculate the cost of washing 100 plates using

this brand of washing up liquid

YES

NO

another

brand?

sort the brands into ascending order

according to the cost of washing 100 plates

stop

input the number of brands to be tested

enter brand name, price, no. of plates washed

display the brands in order of best value

 183

Click on the spin edit and press ENTER to bring up the Object Inspector.

Set the MaxValue property to 8 and MinValue to 2.

Add a label with the caption 'Number of brands to be tested', and a button

with the caption 'Enter data' as shown above.

Compile and run the program. Check that the spin edit can display values

between 2 and 8, then return to the Delphi editing screen.

Add another panel to the form and delete its caption. Place a string grid on

the panel as shown below, and use the Object Inspector to set its properties:

 ColCount 4

 DefaultColWidth 100

 FixedCols 0

 RowCount 9

 Options:

 goEditing True

 ScrollBars None

Drag the first column to be twice as wide as the other columns.

Click on the panel outside the string grid and press ENTER to bring up the

Object Inspector. Set the Visible property to False.

Add a button to the panel. Give this the caption 'analyse data'.

 184

Double-click the 'Enter data' button on the top panel to create an event

handler, then add the lines:

procedure TForm1.Button1Click(Sender: TObject);

begin

 panel1.visible:=false;

 panel2.visible:=true;

end;

This should hide the spin edit panel and make the string grid panel visible

when the 'Enter data' button is pressed. Compile and run the program to

check that this works correctly, then return to the Delphi editing screen.

Double-click the dotted grid outside the panels to produce an OnCreate

event handler for the form. Add lines of program to write captions for the

columns of the string grid:

procedure TForm1.FormCreate(Sender: TObject);

begin

 stringgrid1.cells[0,0]:='Brand name';

 stringgrid1.cells[1,0]:='Price';

 stringgrid1.cells[2,0]:='No. washed';

 stringgrid1.cells[3,0]:='Cost per 100';

end;

Run the program to check this, then return to the Delphi editing screen.

We are going to record the number of brands to be tested as the variable

'count'. Enter this under the Public declarations heading:

 public

 { Public declarations }

 count:integer;

 end;

 185

This variable can be used to set the size of the string grid to have the correct

number of input lines. For example, when testing four brands of liquid, the

input grid should look like the picture above. To set the size of the grid, add

the following lines to the 'Enter data' button click procedure:

procedure TForm1.Button1Click(Sender: TObject);

begin

 panel1.visible:=false;

 panel2.visible:=true;

 count:=spinedit1.value;

 stringgrid1.height:=25*count+30;

end;

Each normal input line on the string grid is 25 units in height, with the top

row of headings being 30 units. The calculation
 25*count+30

therefore gives the total height that the grid should be drawn. Run the

program several times with different numbers of brands selected to check

that the grid is correctly displayed each time, then return to the Delphi

editing screen.

The next step is to set up arrays to hold the brand names of the washing-up

liquids, their prices, the number of plates washed, and the calculated costs

of washing 100 plates. Add these to the Public declarations section:

 public
 { Public declarations }

 count:integer;

 name:array[1..8] of string;

 price:array[1..8] of real;

 plates:array[1..8] of integer;

 hundredcost:array[1..8] of real;

 end;

We now need an event handler procedure to transfer the names, prices, and

numbers of plates washed from the string grid into the three arrays. Click on

the string grid and press ENTER to bring up the Object Inspector. Click the

Events tab and double click alongside OnKeyUp to create the procedure,

then add the lines:

 186

procedure TForm1.StringGrid1KeyUp(Sender: TObject;

 var Key: Word; Shift: TShiftState);

var

 x,y:integer;

begin

 x:=stringgrid1.col;

 y:=stringgrid1.row;

 case x of

 0:name[y]:=stringgrid1.cells[0,y];

 1:begin

 if stringgrid1.cells[1,y]='' then

 price[y]:=0

 else

 price[y]:=

 strtofloat(stringgrid1.cells[1,y]);

 end;

 2:begin

 if stringgrid1.cells[2,y]='' then

 plates[y]:=0

 else

 plates[y]:=

 strtoint(stringgrid1.cells[2,y]);

 end;

 end;

end;

Compile and run the program. Choose a suitable number of washing-up

liquids for testing, then check that test data can be entered in the string grid.

 187

The price column should be error trapped to accept decimal numbers, and

the number washed column error trapped for whole numbers.

Return to the Delphi editing screen. We can now think about processing the

data to find the best value brand. Double-click the 'analyse data' button to

produce an event handler procedure, then add the lines shown below:

procedure TForm1.Button2Click(Sender: TObject);

var

 i:integer;

begin

 for i:=1 to count do

 begin

 hundredcost[i]:=price[i]/plates[i]*100;

 stringgrid1.cells[3,i]:=

 floattostrf(hundredcost[i],ffFixed,8,2);

 end;

end;

This procedure uses a loop to process each of the washing-up liquids in

turn. The cost of washing 100 plates is calculated with the formula:

hundredcost = price of washing up liquid * 100

 number of plates washed

The results are then displayed in column 3 of the string grid:

Compile and run the program. Enter test data and check that correct results

are produced, then return to the Delphi editing screen.

The final step is to sort the parallel arrays so that the best value liquid is at

the top of the list. The lines of program to do this should be added to the

event handler procedure for the 'analyse data' button. The technique is

 188

similar to the Video Shop program, except that four temporay variables will

be needed during the triangular exchange.

Add the lines shown below:
procedure TForm1.Button2Click(Sender: TObject);

var

 i,j:integer;

 tempname:string;

 tempprice,temphundredcost:real;

 tempplates:integer;

begin

 for i:=1 to count do

 begin

 hundredcost[i]:=price[i]/plates[i]*100;

 stringgrid1.cells[3,i]:=

 floattostrf(hundredcost[i],ffFixed,8,2);

 end;

 for i:=1 to count-1 do

 for j:=i+1 to count do

 begin

 if hundredcost[j]<hundredcost[i] then

 begin

 tempname:=name[i];

 tempprice:=price[i];

 tempplates:=plates[i];

 temphundredcost:=hundredcost[i];

 name[i]:=name[j];

 price[i]:=price[j];

 plates[i]:=plates[j];

 hundredcost[i]:=hundredcost[j];

 name[j]:=tempname;

 price[j]:=tempprice;

 plates[j]:=tempplates;

 hundredcost[j]:=temphundredcost;

 end;

 end;

 for i:=1 to count do

 begin

 stringgrid1.cells[0,i]:=name[i];

 stringgrid1.cells[1,i]:=

 floattostrf(price[i],ffFixed,8,2);

 stringgrid1.cells[2,i]:=inttostr(plates[i]);

 stringgrid1.cells[3,i]:=

 floattostrf(hundredcost[i],ffFixed,8,2);

 end;

end;

 189

Remember that we do not know in advance how many washing-up liquids

will be tested. The variable 'count' which records the number of liquids is

used to control the number of times the sorting loops operate.

Compile and run the program. Enter the test data and check that the results

are sorted and displayed correctly:

SUMMARY

In this chapter you have:

 Seen how the bubble sort algorithm works

 Seen the need for a triangular exchange of array items

 Sorted an array of text strings into alphabetical order

 Sorted an array of numbers into ascending order

 Sorted an array of numbers into descending order

 Sorted parallel arrays, keeping corresponding data items correctly

together during exchanges

 Incorporated a bubble sort into a calculation procedure

