
 363

SEVENTEEN

Queues

We are all familiar with the concept of a queue:

Queues play an
important role in computer systems, for example:
• If several computers are sharing the same printer, a queue can be used to

store documents arriving while the printer is busy.
• A queue is used to store key presses received from the keyboard, so that

they are processed in the correct order.

Queues are also often used in computer programs to ensure that data is dealt
with in the correct sequence. The simplest way to set up a queue structure
in a program is to use an array:

To operate a queue
structure, two pointers are
required:
• the back pointer shows

where the next data item
will be added to the
array,

• the front pointer shows
where the next data item
will leave the array.

Initially the back pointer
points to array box 1, but
it moves downwards as
items are added. The back
pointer always shows
where the next item will be
added.

back of the
queue

next person

joins

front of the
queue

next person

leaves

1
2
3
4
5
6
7
8

front pointer

back pointer

front pointer

back pointer

1
2
3
4
5
6
7
8

Fred
Mary
John

 364

If an item is removed from
the queue, the front pointer
moves downwards. The
front pointer always shows
the position where the next
item will leave the array.

If we continue to add items
to the queue, eventually the
the back pointer moves
beyond the last array box.
Once this happens, no
further items can be added
to the queue.

Let's see how this queue structure can operate in a computer program. Set
up a new directory QUEUE and save a Delphi project into it. Use the
Object Inspector to maximize the Form, and drag the form grid to nearly fill
the screen.

Add components to the Form as shown above:

front pointer

back pointer

1
2
3
4
5
6
7
8

Mary
John

front pointer

back pointer

1
2
3
4
5
6
7
8

Mary
John
Chris
Iwan
Sarah
Sian
Steve

 365

• Towards the left of the Form put two Edit boxes, with Labels alongside
captioned 'front pointer ' and 'back pointer'.

• In the centre of the Form add a String Grid. Set the properties:
 ColCount 2
 RowCount 9
 DefaultColWidth 100
 ScrollBars None
• Towards the upper right of the Form put a Button with the caption

'remove item'
• Towards the lower right of the Form put an Edit Box, and below it a

Button with the caption 'add item'.

Compile and run the program to check that the components are displayed
correctly, then return to the Delphi editing screen.

Double-click the Form grid to produce an 'OnCreate' event handler, then add
the lines of program:

procedure TForm1.FormCreate(Sender: TObject);
var
 i:integer;
begin
 with stringgrid1 do
 begin
 cells[0,0]:='array index';
 cells[1,0]:='data';
 for i:=1 to 8 do
 begin
 cells[0,i]:=inttostr(i);
 data[i]:='****';
 cells[1,i]:=data[i];
 end;
 end;
 front:=1;
 back:=1;
 edit1.text:=inttostr(front);
 edit2.text:=inttostr(back);
end;

The procedure begins by writing captions for the columns of the string grid:

 with stringgrid1 do
 begin
 cells[0,0]:='array index';
 cells[1,0]:='data';

 366

The queue is going to be set up using an array of eight memory locations as
shown in the diagrams on the previous page. We use a loop to put the entry
'**** ' into each of the array boxes to indicate that no data has been entered
yet:

for i:=1 to 8 do
 data[i]:='****';

The loop displays these entries in the 'data' column of the string grid:
 cells[1,i]:=data[i];

The front and back pointers for the queue are both intialised to 1. This
represents the starting position for an empty queue. The pointer values are
then displayed in the edit boxes on the form:

 front:=1;
 back:=1;
 edit1.text:=inttostr(front);
 edit2.text:=inttostr(back);

Go to the public declarations section near the top of Unit1 and add the
variables:

 { Public declarations }
 front,back:integer;
 data:array[1..8] of string;

Compile and run the program. Check that the string grid is correctly
displaying the eight '**** ' values from the empty data array, and that the
front and back pointer positions are both shown as 1:

Return to the Delphi editing screen. Double-click the 'add item' button to
create an event handler, then insert the lines:

 367

procedure TForm1.Button2Click(Sender: TObject);
begin
 if edit3.text>'' then
 begin
 data[back]:=edit3.text;
 back:=back+1;
 display;
 edit3.text:='';
 edit3.setfocus;
 end;
end;

The purpose of this procedure is to add an entry to the data array. We begin
with an error trapping line to check that an entry has been typed into the edit
box:

 if edit3.text >' ' then
 begin

If valid data is available, this is transferred from the edit box to the data array
at the position indicated by the back pointer. (Remember that new data joins
the back of the queue):

 data[back]:=edit3.text;
The back pointer is moved down by one position, ready for the next data
item to be added:

 back:=back+1;
A procedure 'display' will then update the string grid entries to show the
new contents of the data array, and the edit box entries to show the new
pointer values:

 display;

The next step is to write the 'display' procedure. Go to the bottom of the
program and insert the lines:

procedure TForm1.display;
var
 i:integer;
begin
 for i:=1 to 8 do
 stringgrid1.cells[1,i]:=data[i];
 edit1.text:=inttostr(front);
 edit2.text:=inttostr(back);

 end;

Add 'display' to the list of procedures near the top of the program:

 procedure FormCreate(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 procedure display;

 368

Save your program so far, then compile and run it. Enter a series of names
by typing in the edit box and clicking the 'add item' button each time. Each
new name should appear in the string grid, and the position of the back
pointer should change. Notice that the back pointer always gives the number
of the array element where the next name will be added:

Eight names can be added successfuly, but problems then occur. There are no
memory locations available in the 'data' array for a nineth or tenth name, and this
leads to an error which stops the program from running.

The simplest way of avoiding difficulties is to disable the 'add item' button and
edit box as soon as the eighth name has been entered. Go to the button click
procedure and add the lines:

procedure TForm1.Button2Click(Sender: TObject);
begin

 edit3.text:='';
 edit3.setfocus;
 if back>8 then
 begin
 button2.enabled:=false;
 edit3.enabled:=false;
 end;
 end;
end;

 369

Compile and run the program, then re-enter the test data. This time, the 'add
item' button should be greyed out as soon as eight names have been entered:

Return to the Delphi editing screen. We can now turn our attention to removing
data from the queue. Double-click the 'remove item' button to produce an event
handler, then add the lines:

procedure TForm1.Button1Click(Sender: TObject);
begin
 data[front]:='****';
 front:=front+1;
 display;
end;

This empties the data array box at the position of the front pointer.
(Remember that data items leave from the front of the queue.) The front
pointer is then moved down one place, ready to mark the position for the
next data item to leave the queue.

Compile and run the program. Enter several names, then check that they can
be removed by clicking the button. This should work, but it is possible to
keep selecting the 'remove item' option even if the queue is empty. The
front pointer keeps increasing, and eventually the an error will occur and the
program will stop.

Return to the 'remove item' button click procedure and add an instruction to
disable the button as soon as the queue becomes empty - this occurs when
the front pointer has moved to the position of the back pointer:

 370

procedure TForm1.Button1Click(Sender: TObject);
begin
 data[front]:='****';
 front:=front+1;
 display;
 if front=back then
 button1.enabled:=false;
end;

We must, however, remember to enable the button again if more items are
entered. Go to the 'add item' button click procedure and add a line:

procedure TForm1.Button2Click(Sender: TObject);
begin
 if edit3.text>'' then
 begin
 data[back]:=edit3.text;
 back:=back+1;
 button1.enabled:=true;
 display;

Compile and run the program to check that items can be added and removed
correctly, then return to the Delphi editing screen.

A circular queue

The program works, but we cannot operate the queue for very long before
before running out of memory space in the array. As soon as box 8 is
reached, no further entries are possible:

A simple way to solve this problem is to reuse the empty memory locations
at the start of the array where data items have been deleted:

 371

The queue can be treated as a circular data structure. A pointer passing
position 8 returns to the start of the array at position 1. This allows the
queue to continue indefinitely, provided that the total number of names in
the queue at any one time never exceeds the eight array boxes available.

To implement the circular queue, it is necessay to make a few modifications to
the program. Go first to the 'add item' button click procedure and add the lines
indicated:

procedure TForm1.Button2Click(Sender: TObject);
begin
 if edit3.text>'' then
 begin
 data[back]:=edit3.text;
 back:=back+1;
 button1.enabled:=true;
 if back>8 then
 back:=1;
 display;
 edit3.text:='';
 edit3.setfocus;
 if back=front then
 begin
 button2.enabled:=false;
 edit3.enabled:=false;
 end;
 end;
end;

The command:

if back>8 then
 back:=1;

resets the back pointer to position 1 when it passes the end of the array.

1

2 3
4

5
6 7

8

Henry

**** ****

Ian

John Keith

front pointer
where the
next item will
leave the

back
pointer
where the
next item
will join the

 372

The section of program:
 if back=front then
 begin
 button2.enabled:=false;
 edit3.enabled:=false;
 end;

disables the 'add item' button and edit box whenever the queue becomes
full.

Note: The front and back pointers are at the same position in the array
whenever the queue is either full or empty. In this case we know the queue
must be full because the pointers have become equal as a result of adding an
item.

Go now to the 'remove item' button click procedure and add the lines:

procedure TForm1.Button1Click(Sender: TObject);
begin
 data[front]:='****';
 front:=front+1;
 button2.enabled:=true;
 edit3.enabled:=true;
 if front>8 then
 front:=1;
 display;
 if front=back then
 button1.enabled:=false;
end;

The lines:

 button2.enabled:=true;
 edit3.enabled:=true;

ensure that the 'add item' button and edit box are enabled whenever there is
an empty space available in the array to accept a data item.

 373

Compile and run the program. It should now be possible to add and delete
names from the queue, with the pointers operating in a circular structure as in
the diagram above.

Our next project illustrates how a queue structure can be incorporated into a
data processing program:

Airport landings

A busy airport is being expanded by the
addition of extra facilities. The plan is to be able to accept one
aircraft landing per minute at peak capacity. The air traffic
controllers are concerned to ensure that the increased traffic in the
airspace around the airport will not jepordise the safety of aircraft
waiting to land, and they have asked for a simulation of the aircraft
arrivals to be carried out.

The simulation will be based on two input values, arrivals frequency
and landing probability :
• The arrivals frequency is the number of aircraft arriving in the

airspace around the airport each hour.
• In ideal conditions, one aircraft can land each minute. However,

there are times when a runway cannot be used because a previous
aircraft is not yet clear or the runway surface is being checked by
mainteneance crews. The landing probability is the percentage
chance that a runway is clear and available for an aircraft to land
during a particular minute.

At present the airport has a single runway and the landing probability
is 50%. If a second runway is built, it is expected that the landing
probability will increase to 80%.

A program is required which will input the arrivals frequency and
landing probaility, then simulate three hours of operation of the
airport.

The air traffic control authority has specified that the time any aircraft
has to wait to land must not exceed 30 minutes. Use the program to
find the maximum number of aircraft which can use the airport per
hour with the current single runway, and how many per hour could be
handled if the second runway is built.

 374

To begin the simulation program, set up a new directory LANDING and
save a Delphi project into it. Use the Object Inspector to maximize the
Form, and drag the form grid to nearly fill the screen.

Add components to the Form as shown above:

• On the left of the Form put a List Box.
• To the right put an Edit Box and the Labels: 'Aircraft arriving ' and
 'per hour'.
• Below this put another Edit Box and the Labels: 'Landing

probability ' and '% '.
• Complete the Form by adding a Button with the caption 'run

simulation'.

Double-click the 'Aircraft arriving' Edit Box to produce an event handler,
then add the lines:

procedure TForm1.Edit1Change(Sender: TObject);
begin
 if edit1.text='' then
 freq:=0
 else
 freq:=strtoint(edit1.text);
end;

Double-click the 'landing probability' Edit Box and set up a similar event
handler:

 375

procedure TForm1.Edit2Change(Sender: TObject);
begin
 if edit2.text='' then
 prob:=0
 else
 prob:=strtoint(edit2.text);
end;

Add the variables 'freq' and 'prob ' to the Public declarations section:

 public
 { Public declarations }
 freq,prob:integer;
 end;

Compile and run the program. Check that the 'Aircraft arriving' and 'Landing
probability' Edit Boxes are error trapped to accept integer numbers, then
return to the Delphi editing screen.

Go to the Public declarations section of Form1 and add an array:

 { Public declarations }
 freq,prob:integer;
 arrive:array[1..180] of integer;

This array has 180 memory locations which will be used to represent the
180 minutes of the simulation period. We can arrange to put numbers in
each array box to show the number of aircraft arriving above the airport in
any particular minute, for example:

In this case:
• 1 aircraft arrives in minute 1
• 2 aircraft arrive in minute 2
• no aircraft arrive in minute 3, etc....

Before the simulation runs we will know the arrival frequency for the
aircraft. Supposing that we choose a value of 50 aircraft per hour. This
will mean that:

• 50 aircraft arrive between minute 1 and minute 60

1 2 0 0 1 2 1 0 1 0 0 0 1 0 2 0 ...

 1 2 3 minute 180

ARRIVE array

 376

• 50 more aircraft arrive between minute 61 and 120, etc...
Within each hour, however, we will assume that the arrivals which add up to
these totals are randomly distributed - arrival times cannot be planned
precisely due to wind speeds and other factors affecting the flights. An
algorithm for setting up the ARRIVE array is therefore:

1. LOOP for minute from 1 to 180

2. Set the arrivals for that minute to zero

3. END LOOP

4. Initialise the random number generator

5. LOOP for each of the 3 hours

6. LOOP for each of the aircraft arriving that hour

7. Get a random number to choose a minute during

 the hour when this aircraft will arrive

8. Add 1 aircraft to the number arriving in the

 chosen minute

9. END LOOP

 10. END LOOP

Go to the end of the program and add a procedure 'arrivals ' to implement
this algorithm:

procedure TForm1.arrivals;
var
 i,n,hour,minute:integer;
begin
 for i:=1 to 180 do
 arrive[i]:=0;
 randomize;
 for hour:=0 to 2 do
 begin
 for i:=1 to freq do
 begin
 n:=random(60)+1;
 minute:=(hour*60)+n;
 arrive[minute]:=arrive[minute]+1;
 end;
 end;
end;

 377

Add 'arrivals ' to the list of procedures at the top of the Unit 1:
type
 TForm1 = class(TForm)

 procedure Edit2Change(Sender: TObject);
 procedure arrivals;

Double-click the 'run simulation ' button to create an event handler and add
the lines of program:

procedure TForm1.Button1Click(Sender: TObject);
var
 minute:integer;
begin
 arrivals;
 listbox1.clear;
 for minute:=1 to 180 do
 begin
 display(minute);
 end;
end;

This begins by calling the 'arrivals ' procedure to set up the arrival times for
aircraft during the simulation. We then begin a loop which will repeat for
each of the 180 minutes of the simulation period. Each time around the loop
we will call another procedure 'display' to give current information about
aircraft arriving, landing or waiting to land. This will allow us to monitor
what is happening at the airport.
 Go to the end of the program and add the 'display' procedure:

procedure TForm1.display(minute:integer);
var
 textline:string;
begin
 textline:='Minute '+inttostr(minute);
 listbox1.items.add(textline);
 textline:='Aircraft arriving: '+
 inttostr(arrive[minute]);
 listbox1.items.add(textline);
 listbox1.items.add('');
end;

Also add 'display' to the procedure list at the top of Unit 1:

 TForm1 = class(TForm)

 procedure arrivals;

 378

 procedure display(minute:integer);
Compile and run the program. Enter an arrival frequency of 50 aircraft per
hour, and a landing probability of 50%, then press the 'run simulation '
button. The numbers of the minutes from 1 to 180 should be displayed in the
List Box, along with the numbers of aircraft arriving during the minute:

You might check that the total numbers of aircraft arriving during the first
hour (minutes 1 - 60) add up to the arrival frequency of 50 which we
specified. Try different arrival frequencies, then return to the Delphi editing
screen.

The next step is to use a random number to decide whether the runway is
clear for landings. Go to the 'run simulation ' button click procedure and
add the lines:

 procedure TForm1.Button1Click(Sender: TObject);
var
 n, minute:integer;
begin
 arrivals;
 listbox1.clear;
 for minute:=1 to 180 do
 begin
 n:=random(100);
 if n<=prob then
 runwayclear:=true
 else
 runwayclear:=false;
 display(minute);

 379

This makes use of a number line technique. We obtain a random number in
the range 0-99, then compare this to the percentage probability for the
runway being clear. Suppose the probability is 75%, this would mean that a
landing is possible if the random number is below 75, but the runway is not
available if the number is 75 or more:

Add 'runwayclear' to the list of variables under the Public declarations
heading:

 public
 { Public declarations }
 freq,prob:integer;
 runwayclear:boolean;

We also need to include a message about the runway in the 'display'
procedure. Insert the lines:

procedure TForm1.display(minute:integer);
var
 textline:string;
begin
 textline:='Minute '+inttostr(minute);
 listbox1.items.add(textline);
 textline:='Aircraft arriving: '+
 inttostr(arrive[minute]);
 listbox1.items.add(textline);
 if runwayclear then
 listbox1.items.add
 ('Runway clear for landing')
 else
 listbox1.items.add('Runway not available');
 listbox1.items.add('');
end;

Compile and run the program. A message about the state of the runway
should be shown for each minute. Return to the Delphi editing screen when
you have tested this.

landing
probability

0 99

runway available for landings runway not available

75

 380

We are now ready to tackle the main objective of the simulation - to find the
amount of time that aircraft have to wait above the airport before being able
to land. This will require a queue structure to record the arrival time of each
aircraft.

To see how the queue will work, consider the following sequence of events:

minute 8 2 aircraft arrive
minute 9 1 aircraft arrives
minute 10 2 aircraft arrive

We record each arrival by entering the minute number in the queue:

New arrivals are entered at the position of the back pointer, then the pointer
moves forward one space.

Suppose that it is now minute 11. The runway is clear, so one of the aircraft
which arrived in minute 8 can land. This is removed from the queue and the
front pointer is moved forward on place:

front pointer back pointer

 1 2 3 4 5 6 7 8 9 10 99 100

 8 8 9 10 10

front pointer back pointer

 1 2 3 4 5 6 7 8 9 10 99 100

 8 9 10 10

 381

We know that the aircraft arrived in minute 8 and landed in minute 11, so
the waiting time must have been 3 minutes.

We can go on adding new aircraft to the queue as they arrive above the
airport, and removing them from the queue when they land, until the
simulation period is completed. Each time an aircraft lands, we calculate the
waiting time with the formula:
 waiting time = (minute of landing) - (minute of arrival)

The queue can be represented as an array using the techniques we learned
earlier in this chapter. We must allow for the maximum number of aircraft
which could be in the queue at any time - 100 should be more than enough
array boxes.

Begin by adding extra variables to the Public declarations section:

 { Public declarations }
 freq,prob:integer;
 runwayclear:boolean;
 arrive:array[1..180] of integer;
 queue:array[1..100] of integer;
 front,back,waittime:integer;

The next step is to add lines of program to the 'run simulation ' button click
procedure. These will initialise the empty queue, then record aircraft
arrivals:

procedure TForm1.Button1Click(Sender: TObject);
var
 n, i, minute:integer;
begin
 arrivals;
 listbox1.clear;
 front:=1;
 back:=1;
 for minute:=1 to 180 do
 begin
 n:=random(100);
 if n<=prob then
 runwayclear:=true
 else
 runwayclear:=false;
 if arrive[minute]>0 then
 begin
 for i:=1 to arrive[minute] do
 begin
 queue[back]:=minute;
 back:=back+1;

 382

 if back>100 then
 back:=1;
 end;
 end;
 display(minute);
 end;
end;

The lines:

 front:=1;
 back:=1;
set the front and back pointers to the starting positions for an empty queue.

The section of program:

 if arrive[minute]>0 then
 begin

 end;
 end;

only operates if there is at least one aircraft arriving during the current
minute. We then begin a loop:

 for i:=1 to arrive[minute] do
which repeats for each of the aircraft arriving.

The minute number is stored in the array at the position of the back
pointer, then the pointer is moved forward one place:

 queue[back]:=minute;
 back:=back+1;

We operate the queue as a circular structure, so that the pointer returns to
position 1 after passing the end of the array:

 if back>100 then

1

2 3
4

98 99

100 arrived in
minute 20

**** ****

front pointer
showing the
arrival time of
the next aircraft
which will land

back pointer
where we will
store the arrival
time of the next
aircraft which
reaches the
airport

arrived in
minute 20

arrived in
minute 22

arrived in
minute 23

 383

 back:=1;
We must now arrange for aircraft to leave the queue when they land. A
further set of lines must be inserted in the 'run simulation ' button click
procedure to do this:

 if arrive[minute]>0 then
 begin
 for i:=1 to arrive[minute] do
 begin
 queue[back]:=minute;
 back:=back+1;
 if back>100 then
 back:=1;
 end;
 end;
 planelanded:=false;
 if runwayclear then
 begin
 if front<>back then
 begin
 planelanded:=true;

 waittime:=minute-queue[front];
 front:=front+1;
 if front>100 then
 front:=1;
 end;
 end;
 display(minute);
 end;
end;

The section of program:
 if runwayclear then
 begin

 end;

only operates if the runway is clear for an aircraft to land.

The next section only operates if the queue is not empty:
 if front<>back then

 begin

 end;

(Remember that the front and back pointers are in the same position for an
empty queue.)

A boolean variable is used to record that the aircraft lands:
 planelanded:=true;

 384

We calculate the waiting time for the plane which has just landed:
 waittime:=minute-queue[front];
then remove the aircraft from the queue by moving the front pointer forward
by one place. The pointer is reset to position 1 if it passes the end of the
array:
 front:=front+1;
 if front>100 then
 front:=1;

Add the booleann variable 'planelanded' to the Public declarations section:

 { Public declarations }

 runwayclear, planelanded :boolean;

The work on the queue is now completed, but we need to add some more
lines of program to the 'display' procedure to show what is happening during
the simulation. Insert the section shown below:

procedure TForm1.display(minute:integer);
var
 textline:string;
 i,last:integer;
begin
 textline:='Minute '+inttostr(minute);
 listbox1.items.add(textline);
 textline:='Aircraft arriving: '+
 inttostr(arrive[minute]);
 listbox1.items.add(textline);
 if runwayclear then
 begin
 listbox1.items.add('Runway clear for landing');
 if planelanded=false then
 listbox1.items.add
 ('No aircraft waiting to land')
 else
 begin
 textline:='An aircraft lands: waiting time ';
 textline:=textline+
 inttostr(waittime)+' minutes';
 listbox1.items.add(textline);
 end;
 end
 else
 listbox1.items.add('Runway not available');
 listbox1.items.add('');
end;

 385

Compile and run the program.

For each minute of the simulation the program should display one of the
three messages:

• runway not available
• runway available but no aircraft waiting to land
• runway available and an aircraft lands - the waiting time will be

given

The final stage of the program is to record and display the maximum waiting
time of any aircraft during the simulation period. Return to the Delphi
editing screen and bring the Form1 window to the front. Add an Edit Box
and Labels with the captions 'Maximum waiting time ' and 'mins':

 386

Add the following lines to the 'run simulation ' button click procedure:

procedure TForm1.Button1Click(Sender: TObject);
var
 n,i,minute:integer;
 maxwait:integer;
begin
 arrivals;
 listbox1.clear;
 maxwait:=0;
 front:=1;
 back:=1;
 for minute:=1 to 180 do
 begin

 if runwayclear then
 begin
 if front<>back then
 begin
 waittime:=minute-queue[front];
 if waittime>maxwait then
 maxwait:=waittime;

 display(minute);
 end;
 edit3.text:=inttostr(maxwait);
end;

Compile and run the simulation. The maximum waiting time should be
displayed:

 387

Use your program to answer the questions we were asked by the airport
planners:

At present the airport has a single runway and the landing probability
is 50%. If a second runway is built, it is expected that the landing
probability will increase to 80%. The air traffic control authority has
specified that the time any aircraft has to wait to land must not
exceed 30 minutes.

• What is the maximum number of aircraft which can use the airport

per hour with the current single runway?

• How many aircraft per hour could be handled if the second runway

is built?

