FIVE

Designing programs

The projects that we have worked on so far haven besatively
straightforward to program directly on the comput&¥ith more complex
projects, however, it is necessary to carefulnphe work beforehand to
ensure that the finished program will meet then€kerequirements. In this
chapter we will look at some of the design methask=d by programmers.

'_ Application Railway tickets

A narrow gauge railway in North Wales requires ampater
program to calculate ticket prices and keep a ceadrthe total
value of tickets issued each day.

The fares are calculated according to the followinrgs:

» The adult single fare for a journey along the if£3.20.

» The child single fare is 60% of the adult fare.

» The return fare is 1Y% times the single fare.

» Each passenger wishing to travel first class pagspplement of
80 pence, which covers either a single or retuumey.

» Groups of 4 or more people travelling together ikeca discount
of 10% on the total fare.

You are asked to design and produce a progransue ihe tickets.

This is quite a complex problem. The first stepriagram design is often to
produce a schematic diagram. We begin by writiogyrd each of the tasks
which the program is to carry out. These tasks tb@n be classified as
either:
* INPUT, where information is entered using the keo or
mouse
» PROCESSING, where the computer carries out calonitor
sorting of the data
 OUTPUT, where results are displayed on the screeprinted
out on paper.

PROGRAM SCHEMATIC

52

processin

processin

input

calculate ticket
cost

add ticket cost
to day total

enter passengey
requirements

display ticket display day total

of ticket sales

outpu

outpu

The stages of the program have been linked by arrand the processing
stages have been enclosed with a dotted line tae ek structure clearer.
We now have a better idea of the work which wilreguired.

First we might turn our attention to the input loé tpassenger requirements.
A useful way of planning this stage is to use anéepie called aralgorithm
progressive refinement sequente We begin by writing down the overall
objective:

1. input passenger requirements

This can then be subdivided into:
1.1 input the number of passengers
1.2 input single/return journey
1.3 input first/second class

Step 1.1 could be further subdivided:
1.1.1 input the number of adults
1.1.2 input the number of children
1.2 input single/return journey
1.3 input first/second class

The process of refining the design has continueitlwe know exactly what
inputs will be needed. Now is the time to begirrkvon the program:

53

Set up a new sub-directory called TICKETS. Opebedphi project and
save it into the sub-directory. Use the Objecpéasor to maximize the
form, and drag the grid larger to nearly fill theresen.

From the refinement sequence above, we can sedotinainputs will be
required. The numbers of adults and children careftered using edit
boxes; add these to the form and place labels silderg

The next step is to input the type of journey: @y return. A convenient
way of doing this is to use m@dio button group. On the STANDARD
component menu sele@dio group

NS ES PN E IS el RO S5 V= E=)
Y Standard £ &dditional {0 ata Access fData Controls fDialogs f5ystem £vB f§amples [

Radio group

Place a radio group box on the form grid. Pres§HERIto bring up the
Object Inspector and add the caption 'journey'type

% Object Inspec... M ER

|HadioGrnup1: TRadioGroup |v

Align alMone 1=
[Caption Joumey type

Color clBtnFace

Columns 1

CH3D Tiue

Cursor cillefault

DiragCursar crlrag
Draghiode drtanual 1

Enabled Tiue
+Font [TFont)

Height [=ia}

HelpContext 1]

Hirt

NSRS TS 2l

Now go to the Items property and double-click the right hand column to
bring up theString list editor window:

54

Caption Journey hipe
Calor clBinFace 2 lines
Columng 1 - -
CH3D The Single :‘
Curzor crlefault
DiragCurzor crDrag
Draghode drntd anual L
Enabled True
+Font [TFant]
Height ER
HelpContest 0
Hint
Iternlndex -1
[Items [TShings) |_v |
\ Properties 4 F vents / K| D
N S Load . ‘ Save. |[|o DK || Cancel 7| Help ‘

Type in the entriesSingle and Return'. Click OK and two small round
buttons labelled 'Single' and 'Return’ should appesade the border of the
radio group box. Adjust the box side if nesessythat the labels are
displayed neatly.

Compile and run the program to test the radio grolishould be possible
to selecteither the'Single’ or the'Return' option, but not both at once:

4Foret Rl MER
Rheilffordd Meirion-Dwyfor

Adults D Children I:l

Return to the Delphi editing screen and set upmalasi radio group box
alongside to input the choice difst class or second class Run the
program to test this:

UGG Class
« Single " First
" Return + Second

58

It is now necessary to addvent handler procedures for the inputs.
Double-click on the edit box for 'Adults’ and adliks of program to the
Edit1Change procedure:

procedure TForml1.Editl1Change(Sender: TObject);
begin
if editl.text="then
adult:=0
else
adult:=strtoint(edit1.text);
end;

This will store the number of adults as an integarable calledadult'.
Produce a similar event handler for the 'Childeslit box:

procedure TForml1.Edit2Change(Sender: TObject);
begin
if edit2.text="then
child:=0
else
child:=strtoint(edit2.text);
end;

Add the variables to theublic declarationslist:

public
{ Public declarations }
adult,child:integer;

We can now create an event handler for Joeirhey typ€ radio group.
Double-click the radio group box to set up the pahae then add the
following lines of program:

procedure TForml1.RadioGrouplClick(Sender: TObject);
begin
if radiogroupl.itemindex=1 then
return:=true
else
return:=false;
end;

This is quite complicated and needs some explamatibhe buttons of the
radio group are given reference numbers by the otenpwhen the
component is set up:

button O

button 1

56

We can find which button has been selected by ahgdtheitemindex value
for the radio group: if this is O then the jourrigge is 'Single’, if it is 1 then
the journey type is 'Return'.

A convenient way to record the journey type is $e a new kind of variable
called a Boolean (named after George Boole who developed the
mathematical logic used by computers). A Booleanable can have only
the values 'TRUE' or 'FALSE".

We are going to use a Boolean variable with theenegturn' to have the
following meanings:

return = TRUE returrket required

return = FALSE single #tkequired.

Create a similar event handler for the ‘Classbrgdoup:

procedure TForml1.RadioGroup2Click(Sender: TObject);
begin
if radiogroup2.itemindex=0 then
firstclass:=true
else
firstclass:=false;
end;

The Boolean variable this time is call@icstclass. It will be set to TRUE if
a first class ticket is required, or to FALSE fosecond class ticket. Notice
that the 'First' button is at the top of the ragioup so will be numbered O:

Add the Boolean variables to tpeblic declarations list:

public
{ Public declarations }
adult,child:integer;
firstclass,return:boolean;
end;

57

This completes the handling of inputs and we can twr attention to
processing.

Before starting a calculation procedure in the pmog let's use an
algorithm progressive refinement sequenceto find exactly what is
required. (The termalgorithm' meansthe sequence of instructions needed
to carry out a task

Begin with the overall task. We can number thisirite it is the second
stage of the program:
2. calculate ticket cost

We might now devise a strategy for carrying outdaleulation:
2.1 calculate the single journey cost forpghesengers
2.2 if areturn ticket is requiretthen

2.3 add the extra for a return fare
24 endif {end of the 'if' condition}
2.5 if the passengers wish to travel first clssn
2.6 add the supplementfifst class
2.7 endif
2.8 if there are four or more passenghen
2.9 deduct the group discount
2.10 endif

Step 2.1 can be further refined:
2.1.1 find the single journey cost for the aslult
2.1.2 add the single journey cost for the chitdr

Once a detailed algorithm has been produced, daeadt way of displaying
this is to draw a flow chart, as shown on the m@ade. The hard work of
planning the calculation is now completed and It ba relatively simple to

write the program.

Add a button and label this ‘issue ticket' :

----------------- Journey type

co0 " Single
SR 1| & Return

issue ticket

58

An edit box will also be needed to display the e¢ictotal during the testing
of the calculation procedure. Put this below'dgie ticket' button.

Flow chart for the ticket calculation

0

find adult single fares:
ticketcost = adults * £3.20

add the child single fares:
ticketcost = ticketcost + (children * £3.20 * 60%

YES
return? —) |
NO multiply by 1%5:
ticketcost = ticketcost * 1.5
« |
_ YES
first class? —> |
NO add 80 pence for each passenger:
ticketcost = ticketcost + (adults +children) * .80
Pl |
YES
4 or more? —p |
NO deduct 10% discount:
ticketcost = ticketcost - (ticketcost * 10%)
Pl |

59

Double-click the issue ticket button to create an event handler and add
program lines to calculate the ticket cost:

procedure TForml1.Button1Click(Sender: TObject);
begin
ticketcost:=adult*3.20;
ticketcost:=ticketcost + child*3.20*0.60;
if return=true then
ticketcost:=ticketcost*1.5;
if firstclass=true then
ticketcost:=ticketcost + (adult+child)*0.80;
if (adult+child) >=4 then
ticketcost:=ticketcost - (ticketcost*0.10);
edit3.text:=floattostrf(ticketcost,ffFixed,8,2);
end,

Make sure that you can relate these lines of progoathe steps on the flow
chart.

It will be necessary to adticketcost as a real number variable:
public
{ Public declarations }
adult,child:integer;
ticketcost:real;
firstclass,return:boolean;
end;

Compile and run the program to see if it works eotly. Try out test data
for different groups of passengers - some tragglfirst class and some
second class, some making single journeys and setme. Remember that
groups of 4 or more will have a 10% discount. Chdek results with a
calculator.

If the calculation procedure works correctly we canw turn our attention
to displaying a ticket - in a real system this vebloé printed out on a printer.
The ticket should show the name of the railway @eigils of the passengers’
journey, as well as the fare to be paid. It wadl best to display this as a
separate window.

Use thenew formi short cut button to createF@rm2 screen grid. Use the

'save projectbutton to save the accompanying progtamit2.pas into your
project sub-directory.

6C

From the ADDITIONAL component menu select tisb@dpé component,
and place a white rectangle in the form window.e d$abel component to
show the name of the railway. Alongside the regi@mdd arimagebox,

and load the bitmap file TRAIN.BMP. Complete thendow with two

buttons with the captions: ‘issue' and ‘cancel’

| Rheilffordd Meirion-Dwyfor

Click on the dotted grid, press RETURN to bringthp Object Inspector
for Form 2, then set thBorder Style property toDialog. This will ensure
that the size of the form cannot be changed whéeprogram is running.

Use the project manager to select the Forml windd»auble-click the
'issue ticket' button to bring up the event handiReplace the
edit3.text:=... '
line with
form2.visible:=true
as shown below:

procedure TForm1.Button1Click(Sender: TObject);
begin
ticketcost:=adult*3.20;
ticketcost:=ticketcost + child*3.20*0.60;
if return=true then
ticketcost:=ticketcost*1.5;
if firstclass=true then
ticketcost:=ticketcost + (adult+child)*0.80;
if (adult+child) >=4 then
ticketcost:=ticketcost - (ticketcost*0.10);
form2.visible:=true;
end;

61

Go to the 'Uses' line near the top of the progradhaadd 'Unit2' to the list:

uses
SysUtils,WinTypes,WinProcs,Messages,Classes,Graphi cs,
Controls,Forms,Dialogs,StdCtrls,ExtCtrls, unit2 ;

Compile the project usindBuild All'. Run the program and enter some
ticket data. Click the 'issue ticket' button onfér The Form2 window
should now appear, ready to display the ticket.it #xm the program by
clicking the cross in the top right hand cornethef Form1 window.

Use the Project Manager to bring the Form2 gridh front. Select the
'memocomponent from the STANDARD menu:

s | BT &L | A (D] E || ® | @ (S| &

~\Standard fadditional {0 ata Accgss 0 ata Controls fDialogs 5 ystem AV £5amples [
L———————— Memo

Drag the mouse to position a memo box on the form:

Rheilffordd Meirion-Dwyfor

Memol

A memo box is similar to an edit box component, egtcthat it allows
multiple lines of text to be displayed and/or editéVe will use the memo to
show the ticket details.

Click on the Form2 grid and press ENTER to bringthg Object Inspector
window.

62

Click the 'events' tab at the bottom of the Obje
Inspector. This brings up a list of events whiah c

. Object Inspe... HIE E

. . o |F|:|rm2: TFarmz |v |
occur while the form is in use - the most famili _
will be: [Ontctivate | .-
: . OnClick,
OnClick OnCloze
meaning that the user has clicked the mouse on OnClosefuery
form, and OnCreate
OnKevpP OnDblClick
. nKeyrress OnDeactivate
which means that the user has pressed a key o1 OnDestroy
keyboard while using the form. We can liakent OnDragDrop
handlerprocedures to any of these events. g”a.’jg':"’e’
nnide s
) OnkeyDowmn
For the present program we are going to create OrkeyPress
event handlefor the Unkeylp
O nbd ouzel own -

On Activate
event. This procedure will be used to displaydicl

\ Properties) Events /

details as soon as Form2 is activated and appea s
on the screen.

Double-click the right hand column alongside 'Ontivate’ and the event
handler will appear. Add lines of program as shdelow:

procedure TForm2.FormActivate(Sender: TObject);
var
textline:string;
begin
memol.clear;
if form1.adult>0 then
begin
textline:=inttostr(forml.adult)+ ' adults’;
memol.lines.add(textline);
end;
end;

The purpose of this is to display the number oftadravelling.

The line
memol.clear;
blanks out the memo box.

The If' condition will operate only if the number of atduls greater than
zero. The program builds up a line of text by @atiag the integer variable
‘adult’ from Forml1 and then adding to this the captiadults . The whole
line is then added to the memo box and displayetth@screen.

63

We must warn the computer that it will need a \@eidrom Forml - we do
this by adding lines of program under the 'impletagon’ heading:

implementation
{$R *.DFM}

uses
unitl;

Before testing the program, double-click the 'cénmetton of Form2 to
create an event handler, and add a line of progpasiose the window:

procedure TForm2.Button2Click(Sender: TObject);
begin

form2.visible:=false;
end;

We can now use the 'Build All' option to compileethroject. Run the
program and test it by entering a numbers of aduReess the 'issue ticket
button and the correct number should be displayeress' cancel' to close
the window. Repeat this a few times with differanimbers, then return to
the Delphi editing screen.

A similar set of lines will be needed to display thumber of children. Add
this and test the program:

procedure TForm2.FormActivate(Sender: TObject);
var
textline:string;
begin
memol.clear,
if form1.adult>0 then
begin
textline:=inttostr(forml.adult)+ " adults’;
memol.lines.add(textline);

end:;
if form1.child>0 then ADD
begin THIS

textline:=inttostr(form1.child)+ ' children’,
memol.lines.add(textline);
end;
end,

We now wish to show whether the tickeffiist or secondclass,single or

return. The boolean variableBrstclass and return' can be used to do
this.

64

Go to theFormActivate event handler again and add the extra lines of
program:

procedure TForm2.FormActivate(Sender: TObject);
var
textline:string;
begin
memol.clear;
if form1.adult>0 then
begin
textline:=inttostr(forml.adult)+ " adults’;
memol.lines.add(textline);
end;
if form1.child>0 then
begin
textline:=inttostr(form1.child)+ ' children’;
memol.lines.add(textline);

end:;
if form1.firstclass=true then ADD
memol.lines.add('First class ‘) THIS
else

memol.lines.add('Second class);
if form1.return=true then
memol.lines.add('Return’)
else
memol.lines.add('Single’);
end,;

Compile and test the program using a variety &kticlata.

The last step is to display the ticket total whighs calculated earlier on
Forml. Do this by adding further lines at the @idhe FormActivate
procedure:

if form1.return=true then
memol.lines.add('Return’)

else
memol.lines.add('Single’);
memol.lines.add("); ADD
textline:="TOTAL: £ THIS

textline:=textline +
floattostrf(form1.ticketcost,fffixed,8,2);
memol.lines.add(textline);
end,

Compile and run the program to test the ticket ldispthen return to the
Delphi editing screen. Bring the Form2 window he front.

65

The display will look neater if the frame aroune ttnemo box is removed.
To do this, click on the memo box and press ENT&Rring up the Object
Inspector. Set thBorderStyle property toNon€, and theCtI3D' property
to falsé :

at Form2 [_Ol]|

Rheilffordd Meirion-Dwyfor

2 adults

2 children
Second class
Return

TOTAL: £13.82

issue

Display of tickets is now completed. The last stad the program is to
keep a total of the tickets issued.

Go to the Forml grid and add a label alongsideeitie box. Also add
another button and give this the caption 'end @nogr

--------------------- Journey type—— - -+ -+ - Class

e Joioot| € Single A i L i

----- | " Heturn

SEEEEEEEEEEE ISP EEPE RN issue ticket

66

Create an event handler for the 'end program' butto

procedure TForm1.Button3Click(Sender: TObject);
begin

halt;
end,

Now double-click on the Forml grid to set up annéveandler procedure
called FormCreate. This procedure will operate only once - at the time
when the program first starts. We can use it tialise the day total to
zero. Add the line:

procedure TForml.FormCreate(Sender: TObject);
begin

daytotal:=0;
end,

'‘Daytotal' needs to be added to the variable list:

{ Public declarations }
adult,child:integer;

ticketcost, daytotal :real,
firstclass,return:boolean;
end,

Go now to Form2 and double-click the'issue' buttorproduce an event
handler and add the lines:

procedure TForm2.Button1Click(Sender: TObject);
begin
form1.daytotal:=form1.daytotal+forml.ticketcost;
form1.edit3.text:=
floattostrf(form1.daytotal,ffFixed,8,2);
form2.visible:=false;
end;

The purpose of this procedure is to:

» add the current ticket price to the day total
» display the day total in the edit box on Forml1
» close the window for the ticket

67

Rheiltfordd Meirion-Dwyfor

Adults Children D

Journey type Class
" Bingle &+ First
@ Return " Second

issue ticket

Day total of tickets issued: |163.30

end program

Compile and try out the finished program.

SUMMARY

In this chapter you have:

Examined three methods used in program desigprogram schematic
diagram algorithm progressive refinement sequenaeg aflowchart
usedradio groupcomponents

used Boolean variables

written sections of program containiiigthen..elseconditions

used amemocomponent to display lines of text

transferred values of variables between the difteF@rms in the project
produced aFormActivateevent handler, which operates each time the
form is opened

produced aormCreateevent handler, which operates only once at the
start of the program.

68

