
 297

FIFTEEN

Geometrical techniques for graphics

As a change from programs handling data records, this chapter looks at two
applications which produce graphical output. In both programs we will need
to use geometrical techniques:

Journey distance

A program is required which will display a map of the Meirionnydd
coast area. It should be possible to mark out a route on the map
using the mouse pointer, then the computer should display the
distance travelled.

Begin the program by setting up a new directory MAPDIST and saving a
Delphi project into it. Maximize the Form and drag the dotted grid to nearly
fill the screen.

A map is provided for you as the file COAST.BMP. There is a slight
problem because map image is larger than the computer screen, but we can
get around this by using a Scroll Box:

Begin by selecting the Scroll Box component from the ADDITIONAL
menu:

Drag the Scroll Box to nearly fill the dotted grid of the Form as shown
below. Press ENTER to bring up the Object Inspector, then double-click
VertScrollBar to show the properties. Set the Range to 1400.

ScrollBox

 298

Now place an Image Box inside the Scroll Box. You will find that by
operating the vertical scroll bar, you will be able to drag the bottom edge of
the Image Box downwards so that it is much larger than the screen height.
Keep extending the Image Box so that the dotted outline extends nearly to
the edges of all the scrolling screen area.

Double-click in the Image Box and load the file COAST.BMP. Check that
the map fits the Image Box. Drag the Scroll Box and Image Box wider if
necessary.

Scroll Box Image Box

 299

NOTE: It is important to keep the map the same size as the original bitmap
image in the file, so that we can make accurate distance measurements.
Don't alter the Stretch property - leave it as 'False'.

Compile and run the program. Check that the whole map area from Blaenau
Ffestiniog in the north to Tywyn in the south can be seen. Return to the
Delphi editing screen.

Use the short-cut button to add a new blank Form. This will be a small
window to show distances measured on the map:

Use the Object Inspector to set the properties for Form2:
 BorderStyle Dialog
 FormStyle StayOnTop
 Visible True

Add two Edit Boxes, and the Labels: 'distance:', 'km', and 'miles'.
Complete the Form by including two Buttons with the captions 'reset' and
'end program'.

Bring Unit2 to the front and add a 'uses' instruction under the
implementation heading:

implementation
{$R *.DFM}
uses
 unit1;

 300

Go now to Unit1, and add Unit2 to the 'uses' list near the top of the
program:

uses
 SysUtils, WinTypes,....ExtCtrls, unit2 ;

This has linked the Units so that they are now able to exchange data when
the program is running.

Bring Form2 to the front and double-click the 'end program' button to
produce an event handler. Add the line:

procedure TForm2.Button2Click(Sender: TObject);
begin
 halt;
end;

Build and run the program. Check that the Form2 window appears on top
of the map, then press the 'end program' button to return to the Delphi
editing screen.

Click to select the Image Box on Form1, then press ENTER to bring up the
Object Inspector. Click the Events tab, then double-click alongside
'OnMouseDown' to produce an event handler. Add the lines:

procedure TForm1.Image1MouseDown
 (Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 image1.canvas.brush.color:=clBlue;
 image1.canvas.ellipse(x-5,y-5,x+5,y+5);
end;

The purpose of these lines is to produce a blue circle at the point where the
mouse is clicked on the map. The computer records the position as x screen
units across and y screen units down. We make use of these variables to
draw the circle to fit within the boundaries:

 x-5 x+5

y-5

y+5

 301

Build and run the program. By clicking the mouse on the map, it should be
possible to plot a series of blue circles to mark out a route. Check that this
works, then return to the Delphi editing screen.

It would be useful, particularly with routes across open country, to show the
circles linked with a dotted line:

 302

Three steps are needed to draw the first leg of the route:

The sequence can then be repeated for each of the remaining stages:

Return to the Unit1 program screen and add lines to the MouseDown event
handler to do this:

procedure TForm1.Image1MouseDown
 (Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 image1.canvas.brush.color:=clBlue;
 if firstpoint=true then
 firstpoint:=false
 else

STEP 1
Draw the first circle
and record the
coordinates as
(lastx, lasty)

STEP 2
Draw the next
circle at the
point (x, y)

STEP 3
Draw the dotted line
from (lastx, lasty)
to (x, y)

STEP 1
Record the
coordinates of the
previous circle as
(lastx, lasty)

STEP 2
Draw the next
circle at the
point (x, y)

STEP 3
Draw the dotted line
from (lastx, lasty)
to (x, y)

 303

 begin
 image1.canvas.pen.style:=psDot;
 image1.canvas.moveto(lastx,lasty);
 image1.canvas.lineto(x,y);
 image1.canvas.pen.style:=psSolid;
 end;
 image1.canvas.ellipse(x-5,y-5,x+5,y+5);
 lastx:=x;
 lasty:=y;
end;

We are using a Boolean variable 'firstpoint ' which is true when the first
point on the route has just been entered - this must be treated differently
because no dotted line is needed. We just set 'firstpoint ' to false, ready for
the next time a point is entered:

 if firstpoint=true then
 firstpoint:=false

For other points along the route, a dotted line is drawn to link the current
point to the previous point. This is done with:

 image1.canvas.pen.style:=psDot;
 image1.canvas.moveto(lastx,lasty);
 image1.canvas.lineto(x,y);

At the end of the precedure, we record the position of the circle we have just
drawn as (lastx, lasty), ready for linking to the next one along the route:

 lastx:=x;
 lasty:=y;

Add the variables to the Public declarations section near the top of the
program:

 public
 { Public declarations }
 lastx,lasty:integer;
 firstpoint:boolean;

One final task is to initialise 'firstpoint ' to true when the program starts.
Double-click the Form1 dotted grid to produce an 'OnCreate' procedure,
then add the line:

procedure TForm1.FormCreate(Sender: TObject);
begin
 firstpoint:=true;
end;

 304

Build and run the program. When a route is entered, the points should now
be linked by a dotted line. Return to the Delphi editing screen.

It would be useful to be able to reload a clean copy of the map, ready for a
different route to be entered. Bring Form2 to the front and double-click the
'reset' button to create an event handler. Add the lines:

procedure TForm2.Button1Click(Sender: TObject);
begin
 form1.firstpoint:=true;
 form1.image1.picture.loadfromfile('coast.bmp');
 edit1.text:='';
end;

Build and run the program. Enter a route, then check that the map can be
cleared by pressing the 'reset' button. Return to the Delphi editing screen.

We can now start work on the calculation of journey distance. We know the
screen coordinates of each point along the route, so we can work out how
far we have moved vertically and horizontally on the map:

The straight line distance 'as the crow flies' can be found using Pythagoras'
theorem. We add the squares of the horizontal and vertical changes in
distance, then find the square root:

One final difficulty is that the distance will be measured in screen units. We
will need a conversion factor to convert this to kilometres or miles on the
map. The map scale is :
 20 screen units = 1 kilometre

D y lasty x lastx= − + −() ()2 2

(lastx, lasty)

(x,y)

x - lastx

y - lasty

 305

Go to the bottom of Unit1, just above the final 'end.' command, and add a
new procedure to carry out the distance calculation:

procedure TForm1.calculate
 (x,y,lastx,lasty:real);
var
 d:real;
begin
 scale:=1/20;
 d:=sqrt(sqr(x-lastx)+sqr(y-lasty));
 distance:=distance+d*scale;
 form2.edit1.text:=
 floattostrf(distance,fffixed,8,1);
end;

The first line of the procedure:

 procedure TForm1.calculate(lastx, lasty, x, y :real);

is showing that the four coordinate values lastx, lasty, x, y need to be input
to the procedure for use in the calculation.

The line:

 d:=sqrt(sqr(x-lastx)+sqr(y-lasty));

uses the Pythagoras formula to calculate the distance in screen units between
the current pair of points, then the line:

 distance:=distance+d*scale;

converts this to kilometres and adds it to the journey distance so far. The
total distance is then displayed in the Edit Box on Form2:

 form2.edit1.text := floattostrf(distance,fffixed,8,1);

Add the procedure to the list near the top of Unit1:

 type

 procedure FormCreate(Sender: TObject);
 procedure calculate(x,y,lastx,lasty:real);

and add the variables to the Public declarations:

 { Public declarations }
 lastx,lasty:integer;
 firstpoint:boolean;
 distance,scale:real;

 306

It is necessary to add lines to the 'MouseDown' procedure to initialise the
distance to zero when the first point is entered, and to call the calculate
procedure each time another point along the route is entered. The procedure
becomes:

procedure TForm1.Image1MouseDown
 (Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 image1.canvas.brush.color:=clBlue;
 if firstpoint=true then
 begin
 distance:=0;
 firstpoint:=false;
 end
 else
 begin
 image1.canvas.pen.style:=psDot;
 image1.canvas.moveto(lastx,lasty);
 image1.canvas.lineto(x,y);
 image1.canvas.pen.style:=psSolid;
 calculate(x,y,lastx,lasty);
 end;

Build and run the program. Test this by entering the route from Dolgellau to
Porthmadog along the main road via Trawsfynydd. Press 'reset', then find
the distance along the alternative route via Barmouth and the toll bridge at
Penrhyndeudraeth. Return to the Delphi editing screen.

It just remains to show the distance in miles as well as kilometres. To
convert from kilometres to miles it is necessary to multiply by 0.62137. Add
lines to the calculate procedure to do this:

procedure TForm1.calculate(x,y,lastx,lasty:real);
var
 d, miles :real;
begin
 scale:=1/20;
 d:=sqrt(sqr(x-lastx)+sqr(y-lasty));
 distance:=distance+d*scale;
 miles:=distance*0.62137;
 form2.edit1.text:=floattostrf(distance,fffixed,8, 1);
 form2.edit2.text:=floattostrf(miles,fffixed,8,1);
end;

Build an run the finished program. Check that distances are now displayed in
miles as well as kilometres.

 307

For the next project we will look at graphical techniques for animation,
taking an example from engineering.

Now that fast computers with good graphics are available, engineers are
making more and more use of animation when designing machinery.
Computer animations can be used to check that moving parts will not come
into collision with each other while the machine is running, and that valves
and switches will operate at the correct moments - this is known as
'kinematic analysis'.

Diesel engine animation

You are asked to produce a computer
animation of a diesel engine, showing the motion of the piston and
valves.

The stages of the diesel engine cycle are shown on the following
page. The complete cycle involves two rotations of the flywheel:

1. The induction stroke. The inlet valve is open, and air is sucked

into the cylinder as the piston moves downwards.
2. The compression stroke. The inlet valve closes, and the air in the

cylinder is compressed as the piston moves upwards.
3. The power stroke. Fuel is sprayed into the cylinder. This ignites,

and the explosion drives the piston downwards.
4. The exhaust stroke. The exhaust valve opens, and the exhaust

gases are pushed out of the cylinder as the piston moves upwards
again.

Begin the program by setting up a new directory DIESEL and saving a
Delphi project into it. Use the Object Inspector to Maximize the screen, and
drag the dotted grid to nearly fill the screen. Add an Image Box to the
Form. Set the Width property to 640 and the Height property to 480.

Double-click the dotted grid of the form outside the Image Box to produce
an 'OnCreate' event handler. Add the line:

procedure TForm1.FormCreate(Sender: TObject);
begin
 image1.canvas.rectangle(0,0,640,480);
end;

 308

 309

Compile and run the program to check that a white background area is
displayed, then return to the Delphi editing screen.

Looking at the drawings on the previous page, it is possible to divide the
engine into moving and non-moving parts. It is simplest to begin work on
the non-moving components:

There is a mirror image symmetry through the centre of the design, so it
will be easiest to make measurements relative to this. For example, the
inside edges of the cylinder can be drawn 30 units to the left and right of
the centre line. Other suitable screen coordinates are shown on the
diagram.

Go to the Unit1 program screen and add a constant to represent the
middle of the drawing area. The image box has a width of 640 screen
units, so the mid line will be at 320:

 { Public declarations }
end;

var
 Form1: TForm1;
const
 cx=320;

 310

Go to the bottom of the program and add a new procedure 'engine' to draw
the non-moving parts:

procedure TForm1.engine;
begin
 with image1.canvas do
 begin
 brush.color:=clGray;
 pen.color:=clGray;
 rectangle(cx-30,140,cx-45,275);
 rectangle(cx+30,140,cx+45,275);
 rectangle(cx-100,140,cx-30,132);
 rectangle(cx+100,140,cx+30,132);
 moveto(cx-3,80);
 lineto(cx-3,150);
 moveto(cx+3,80);
 lineto(cx+3,150);
 rectangle(cx-3,150,cx-6,114);
 rectangle(cx+3,150,cx+7,114);
 rectangle(cx-100,114,cx-6,120);
 rectangle(cx+100,114,cx+6,120);
 rectangle(cx-30,132,cx-26,150);
 rectangle(cx+30,132,cx+26,150);
 end;
end;

Notice that we have used a line:

 with image1.canvas do
This avoids having to write the 'image1.canvas' prefix in front of each
individual graphics command.

Add the procedure to the list near the top of the program:

type
 TForm1 = class(TForm)
 Image1: TImage;
 procedure FormCreate(Sender: TObject);
 procedure engine;

Go to the FormCreate event handler and include a line to call the 'engine'
procedure:

procedure TForm1.FormCreate(Sender: TObject);
begin
 image1.canvas.rectangle(0,0,640,480);
 engine;
end;

 311

Compile and run the program to check that the graphics are drawn
correctly. The cylinder, inlet and outlet pipes and the fuel inlet should be
shown. Return to the Delphi editing screen.

The next step is to draw the moving parts - the flywheel, piston and
connecting rod assembly. This can be done in another procedure called
'piston'. Add this to the procedure list near the top of the program:

 type
 TForm1 = class(TForm)
 Image1: TImage;
 procedure FormCreate(Sender: TObject);
 procedure engine;
 procedure piston(angle:integer);

It will be convenient to use a parameter 'angle' to specify how far the
flywheel has rotated. We can measure the angle clockwise from the
horizontal position:

Go to the bottom of the program and insert the 'piston' procedure shown on
the next page. This draws the circle of the flywheel with a radius of 65
screen units, centred at a point 350 units down the screen.

We will be making a number of measurements relative to the centre of the
flywheel, so it is convenient to use a variable 'cy' to record the vertical screen
coordinate for the centre of the circle:

 312

procedure TForm1.piston(angle:integer);
var
 cy:longint;
begin
 cy:=350;
 with image1.canvas do
 begin
 brush.color:=clWhite;
 pen.color:=clBlack;
 ellipse(cx-65,cy-65,cx+65,cy+65);
 end;
end;

Insert lines in the 'FormCreate' event handler to initialise the angle to zero,
then call the 'piston' procedure:

procedure TForm1.FormCreate(Sender: TObject);
begin
 image1.canvas.rectangle(0,0,640,480);
 engine;
 angle:=0;
 piston(angle);
end;

Add 'angle' to the Public declarations section:
 public
 { Public declarations }
 angle:integer;

Compile and run the program to check that a circle is drawn for the flywheel,
then return to the Delphi editing screen.

We must now draw the small circle
representing the end of the
connecting rod attached to the
flywheel. Its position will depend
on the rotation angle of the
flywheel.

It will be useful to set up two new
variables xpos and ypos to give the
position of the small circle relative
to the centre of the flywheel.

 313

Add lines to the piston procedure to calculate xpos and ypos, and draw the
small circle:

procedure TForm1.piston(angle:integer);
var
 cy, xpos,ypos :longint;
 rad:real;
begin
 cy:=350;
 with image1.canvas do
 begin
 brush.color:=clWhite;
 pen.color:=clBlack;
 ellipse(cx-65,cy-65,cx+65,cy+65);
 rad:=angle*pi/180;
 xpos:=round(35*cos(rad));
 ypos:=round(35*sin(rad));
 ellipse(cx+xpos-12,cy+ypos-12,
 cx+xpos+12,cy+ypos+12);
 end;
end;

It is necessary to convert the angle from degrees to radians before carrying
out the calculation. This is done in the line:

 rad:=angle*pi/180;

Values for xpos and ypos are calculated using COSINE and SINE functions.

 xpos:=round(35*cos(rad));
 ypos:=round(35*sin(rad));

We have made the small circle follow
a path which is 35 screen units out
from the centre of the flywheel:

The small circle is then drawn with a radius of 12 units:

 ellipse(cx+xpos-12,cy+ypos-12, cx+xpos+12,cy+ypos+12);

The extra distances xpos and ypos are added to the flywheel centre position
(cx,cy) to give the centre for the small circle.

Compile and run the program to check that the small circle is drawn, then
return to the Delphi editing screen.

35 units

 314

We have been able to produce the basic shape of the engine, so now we can
begin work on the animation. This will require some extra components to be
added to the form.

Go first to the SYSTEM menu and select the Timer component:

As in the case of the Main Menu which we used in a previous chapter, the
Timer component appears as a fixed size icon. Place the Timer icon near the
edge of the Form grid:

Now add a Spin Edit component at the edge of the Form. Finally, go to the
VBX component menu and select a Bi Switch:

Place this below the Spin Edit as shown.

Timer

BiSwitch

 315

Click on the Timer icon and press ENTER to bring up the Object Inspector.
Set the properties:
 Enabled True
 Interval 200
The timer will be used to measure the intervals between redrawing the engine
in each rotation position. The interval time is given in thousandths of a
second, so we have set a time of 200/1000 - this is one fifth of a second.

Close the Object Inspector, then double-click the Timer icon to produce an
event handler procedure. Add the lines:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 engine;
 angle:=angle+15;
 if angle>720 then
 angle:=angle-720;
 piston(angle);
end;

This procedure will be activated every fifth of a second - each time the
interval set on the Timer is completed. The non-moving parts will be
redrawn with:

 engine;

Fifteen degrees are then added to the angle. The diesel engine cycle involves
two complete turns of the flywheel before repeating. We can record the
position in the cycle by allowing the angle to increase up to 720º, but it must
then be reset to zero:

 angle:=angle+15;
 if angle>720 then
 angle:=angle-720;

We finally use the piston procedure to draw the small circle in its correct
rotation position on the flywheel:

 piston(angle);

Compile and run the program. The engine should be shown with the small
circle rotating around the flywheel. Check also that the Spin Edit value can
be changed, and that the Bi Switch can be clicked to the on or off position.
Return to the Delphi editing screen.

 316

The Bi Switch is to allow the animation to be switched on and off. Click on
the BiSwitch component and press ENTER to bring up the Object Inspector.
Set the 'pOn' property to True. This initialises the switch to be in the 'on'
position when the program starts.

Close the Object Inspector then double-click the BiSwitch to produce an
event handler. Add the line:

procedure TForm1.BiSwitch1On(Sender: TObject);
begin
 timer1.enabled:=true;
end;

This starts the Timer to run the animation whenever the BiSwitch is in the
'on' position. We also need an event handler to stop the timer when the
BiSwitch is 'off'. Go back to the Form window and click the switch
component. Press ENTER to bring up the Object Inspector, then click the
Events tab. Double-click alongside 'OnOff ' to produce an event handler,
then add the line:

procedure TForm1.BiSwitch1Off(Sender: TObject);
begin
 timer1.enabled:=false;
end;

 317

Compile and run the program. The BiSwitch should begin in the 'on'
position, with the red indicator showing. Click the switch and the animation
should pause. Click again and it should re-start. When you have checked
that this is working correctly, return to the Delphi editing screen.

The purpose of the SpinEdit is to control the speed of the animation. Click
on the SpinEdit and press ENTER to bring up the Object Inspector. Set the
properties:

 MaxValue 10
 MinValue 1
 Hint speed control
 ShowHint True
 EditorEnabled False

Compile and run the program. You should find that the number in the
SpinEdit window can only be changed by clicking the small arrows alongside
- we have disabled the window so that values cannot be typed directly from
the keyboard.

If you leave the mouse pointer stationary on the SpinEdit box for a couple of
seconds, a yellow hint label with the text 'speed control' will appear. Hint
labels can be added to most components by setting their Hint and ShowHint
properties with the Object Inspector.

Return to the Delphi editing screen and double-click the SpinEdit to produce
an event handler. Add the line:

procedure TForm1.SpinEdit1Change(Sender: TObject);
begin
 timer1.interval:=(11-spinedit1.value)*20;
end;

This takes the value in the SpinEdit box and calculates a time interval for the
Timer. The formula has been written in such a way that the larger the
number in the SpinEdit box, the shorter the time intervals between redrawing
the pictures. This means that the simulation will run faster as the SpinEdit
value increases.

Compile and run the simulation. Check that the animation can be speeded up
or slowed down by changing the SpinEdit. Return to the Delphi editing
screen.

The next step is to draw the piston and connecting rod in their correct
positions as the flywheel rotates. The mathematics for this will require some
careful planning!

 318

When the animation is running we will need to draw a rectangle to represent
the piston and a line to represent the connecting rod, as shown in the left
hand diagram. These must be positioned correctly on the screen.

For any rotation angle, we already know the position of point B where the
connecting rod is joined to the flywheel - this is given by the variables xpos
and ypos, relative to the centre of the flywheel at C. To complete the
graphics we need to know the distance d - the extra distance up the screen to
the top of the connecting rod.

We can choose the length of the connecting rod; 140 screen units would be
suitable. It is then possible to calculate d using Pythagoras' formula on the
right-angled triangle ABP in the diagram:

Add lines to the piston procedure to carry out this calculation and draw the
rectangle and line. The procedure becomes:

procedure TForm1.piston(angle:integer);
var
 cy,xpos,ypos ,len,py :longint;
 rad ,d :real;
begin
 cy:=350;
 len:=140;
 with image1.canvas do
 begin

d len xpos= −2 2

A

B
C

C

B

A

 xpos ypos

P
D

P

len

d ?

 319

 brush.color:=clWhite;
 pen.color:=clWhite;
 rectangle(cx-30,150,cx+30,320);
 pen.color:=clBlack;
 ellipse(cx-65,cy-65,cx+65,cy+65);
 rad:=angle*pi/180;
 xpos:=round(35*cos(rad));
 ypos:=round(35*sin(rad));
 d:=sqrt(len*len-xpos*xpos);
 py:=cy+ypos-round(d);
 moveto(cx+xpos,cy+ypos);
 lineto(cx,py);
 rectangle(cx-30,py-20,cx+30,py+30);
 ellipse(cx+xpos-12,cy+ypos-12,
 cx+xpos+12,cy+ypos+12);
 end;
end;

The line:
 len:=140;

sets the length of the connecting rod to be 140 screen units.

We calculate the distance d using Pythagoras' formula:

 d:=sqrt(len*len-xpos*xpos);

The next step is to draw the connecting rod; 'py' is the vertical coordinate
for the top end of the rod:

 py:=cy+ypos-round(d);
 moveto(cx+xpos,cy+ypos);
 lineto(cx,py);

The piston is then drawn as a rectangle filling the width of the cylinder, and
extending 20 units above and 30 units below the end of the connecting rod:

 rectangle(cx-30,py-20,cx+30,py+30);

NOTE:
To avoid previous positions of the piston and connecting rod showing on the
diagram, instructions have been included to blank out the previous drawing
with a white rectangle before the new piston is drawn:

 brush.color:=clWhite;
 pen.color:=clWhite;
 rectangle(cx-30,150,cx+30,320);

Compile and run the program to test the animation of the piston and
connecting rod assembly, then return to the Delphi editing screen.

 320

We now need to draw the inlet valve which opens to allow air into the
cylinder, and the outlet valve which opens to let the exhaust gases escape.
The valves can be drawn with a single procedure, provided we specify:

• which side of the engine - left or right
• which position for the valve - up or down.

This information can be included as parameters when the procedure is called.

Begin by adding a valve procedure to the list near the top of the program:

type
 TForm1 = class(TForm)

 procedure engine;
 procedure piston(angle:integer);
 procedure valve(side,position:string);

Go to the bottom of the program and add the procedure:

procedure TForm1.valve(side,position:string);
var
 cx,cy:integer;
begin
 if side='left' then
 cx:=303;
 if position='up' then
 cy:=78;
 with image1.canvas do
 begin
 brush.color:=clWhite;
 pen.color:=clBlack;
 moveto(cx-2,cy);
 lineto(cx-2,cy+60);
 lineto(cx-10,cy+72);
 lineto(cx+10,cy+72);
 lineto(cx+2,cy+60);
 lineto(cx+2,cy);
 lineto(cx-2,cy);
 end;
end;

When the procedure is called, the parameters 'side' and 'position' will be
given as text strings, and will have the values 'left' or 'right', 'up' or 'down':

procedure TForm1.valve(side,position:string);

 321

We then make use of 'side' and 'position' to set the coordinates cx and
cy. These will determine where on the screen the valve is drawn:

 if side='left' then
 cx:=303;
 if position='up' then
 cy:=78;

A series of graphics commands then draw the valve in the required
position:

 with image1.canvas do
 begin
 brush.color:=clWhite;
 pen.color:=clBlack;
 moveto(cx-2,cy);
 lineto(cx-2,cy+60);

Go to the Form1 screen and double-click the Timer component to bring up
the event handler. Add a line of program to call the valve procedure with the
parameters 'left' and 'up':

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 engine;
 angle:=angle+15;
 if angle>720 then
 angle:=angle-720;
 piston(angle);
 valve('left','up');
end;

Compile and run the program. A valve should be
shown in the 'left - up' position.

The shape of the valve is correct, but we need to
make a gap in the top of the engine assembly for
the valve stem to pass through. This can be done
by drawing a white rectangle.

We also need to allow for the valve being on the
'right' side, or in the 'down' position. Add lines
to the valve procedure to complete these tasks:

 322

procedure TForm1.valve(side,position:string);
var
 cx,cy:integer;
begin
 if side='left' then
 cx:=303
 else
 cx:=336;
 if position='up' then
 cy:=78
 else
 cy:=88;
 with image1.canvas do
 begin
 brush.color:=clWhite;
 pen.color:=clWhite;
 rectangle(cx-2,cy-20,cx+3,cy+60);
 rectangle(cx-9,cy+50,cx+10,cy+72);
 pen.color:=clBlack;
 moveto(cx-2,cy);
 lineto(cx-2,cy+60);
 lineto(cx-10,cy+72);

NOTE:
There is never a semi-colon at the end of the line before an else command.
Be careful to delete the semi-colons when you are altering this procedure.

Add another line to the Timer event handling procedure to draw a valve in
the 'right - down' position:

 323

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 engine;
 angle:=angle+15;
 if angle>720 then
 angle:=angle-720;
 piston(angle);
 valve('left','up');
 valve('right','down');
end;

Comile and run the program to check that both valves are now drawn
correctly, then return to the Delphi editing screen.

It just remains to animate the valves so that they open and close at the
correct times during the engine cycle.

The diagrams on page 308 show the four stages of the Diesel engine cycle:
the induction, compression, power and exhaust strokes. These stages can
be related to the rotation angle of the flywheel:

It is necessary for the inlet valve to be open during the induction stroke, and
the outlet valve must be open during the exhaust stroke. The rotation
angles at which the valve positions change are shown in the diagram above.

0º 180º 360º 540º 720º

0º
inlet valve
open

90º
inlet valve
closes

450º
outlet valve
opens

600º
outlet valve
closes

660º
inlet valve
opens

INDUCTION

COMPRESSION
 POWER

EXHAUST

INDUCTION

 324

Go to the Timer event handling procedure and change the lines which display
the valves:

procedure TForm1.Timer1Timer(Sender: TObject);
begin
 engine;
 angle:=angle+15;
 if angle>720 then
 angle:=angle-720;
 piston(angle);
 if (angle<90) or (angle>660) then
 valve('left','down')
 else
 valve('left','up');
 if (angle>450) and (angle<600) then
 valve('right','down')
 else
 valve('right','up');
end;

Compile and run the program. The valves should now open and close at the
correct times during the engine cycle. Exit and return to the Delphi editing
screen.

It would be helpful to display captions to show the stages of the engine cycle
as the animation is running. Add lines to the Timer procedure to do this:

 if (angle>450) and (angle<600) then
 valve('right','down')
 else
 valve('right','up');
 with image1.canvas do
 begin
 pen.color:=clBlack;
 case angle of
 90: textout(50,50,'COMPRESSION ');
 270: textout(50,50,'POWER ');
 450: textout(50,50,'EXHAUST ');
 630: textout(50,50,'INDUCTION ');
 end;
 end;
end;

Compile and run the program. The caption should change as each stage of
the engine cycle begins. Check this against the diagram on page 307, then
return to the Delphi editing screen.

 325

One further improvement we can make is to show the fuel being injected into
the cylinder at the start of the power stroke:

Go back to the Timer procedure and add a section of program to do this:

 with image1.canvas do
 begin
 pen.color:=clBlack;
 case angle of
 90: textout(50,50,'COMPRESSION ');
 270: textout(50,50,'POWER ');
 450: textout(50,50,'EXHAUST ');
 630: textout(50,50,'INDUCTION ');
 end;
 if angle=270 then
 begin
 brush.color:=clYellow;
 pen.color:=clYellow;
 rectangle(cx-2,80,cx+3,150);
 pen.color:=clBlack;
 brush.color:=clWhite;
 textout(306,50,'fuel');
 end;

 326

 if angle=360 then
 begin
 brush.color:=clWhite;
 pen.color:=clWhite;
 rectangle(306,50,360,64);
 rectangle(cx-2,80,cx+3,150);
 end;
 end;
end;

A yellow rectangle fill is shown for the fuel when the angle reaches 270º, and
this is blanked out with a white rectangle at 360º when the injection of fuel
stops.

Compile and run the finished program.

SUMMARY

In this chapter you have:
• Used a Scroll Box to display a bitmap image larger than the screen
• Set the Range on the Scroll Bar to match the size of the image
• Found the position of the mouse on the screen by using the Mouse Down

event handler of the Image Box
• Used the canvas.pen.style property to produce a dotted line
• Calculated a distance on the screen by means of Pythagoras' theorem
• Produced animation using a Timer component
• Displayed a hint for a component
• Made use of variables (e.g. cx, cy) to simplify the drawing of graphics

