
394 Developing Numeracy in Further Education

13 Algorithms for problem solving

A broader definition of numeracy extends far beyond arithmetic and the application of
number. Numeracy skills which are highly valued by employers include: problem solving in a
vocational context, the ability to work with information technology systems, and an ability
to convert between different representations of quantitative data using numbers, diagrams
or algebraic expressions as appropriate. All of these wider skills come together in the design
of algorithms.

An algorithm is a set of instructions for carrying out a task. This might be something as

familiar as a cookery recipe:

Figure 415: algorithm for making jam tarts

However, we tend to use the term algorithm most frequently when referring to sequences

of instructions in computer programs. Typically, an algorithm involves a multi-step

calculation, and its design can require a high level of numeracy and problem solving skills.

When presenting the design for an algorithm, the steps may be written in ordinary

language, as in the recipe example above, or may be displayed in the form of a flowchart or

other type of diagram.

The use of mathematical algorithms in computer programs has become increasingly

important as computer systems have become more powerful. Software can now

accomplish many of the complex tasks which were previously only possible through the

application of human intelligence. Examples which we will examine in this chapter include

journey planning, fast sorting of data, game playing, and data encryption.

We begin by investigating algorithms used in journey planning.

www.eatsamazing.co.uk

Chapter 13: Algorithms for problem solving 395

Dijkstra's algorithm

A frequent requirement in computer applications is to find the shortest, quickest, or

cheapest route from one place to another through a network of possible paths. To

demonstrate this task, we will consider a small network:

Figure 416: network of towns and journey distances

The nodes in the network, A – D represent four towns. The links between the nodes

represent roads, with distances shown in km. The network is represented diagrammatically,

so the links are not drawn to scale. We are simply interested in the topology of the network:

the way in which the nodes are connected.

The objective of the task is to find the shortest route from town A to town D, out of the

various routes which are possible. If we were to do this manually, we might make a few

simple calculations by mental arithmetic before deciding on the solution. However, if the

task is to be undertaken by a computer, then a very precise algorithm for checking all

possible routes must be specified. An efficient method for carrying out this task is Dijkstra's

algorithm. The same algorithm can be used by the computer to quickly find solutions to

much more complex and challenging route finding problems, such as choosing the shortest

route to travel by road from Cardiff, via the Channel Tunnel, to Budapest!

Returning to our simple network, the first step is to identify the towns which can be reached

directly from the starting point. We then record the distances travelled along the links.

B

A

C

D

6
12

23

19

7

3

B

A

C

D

6
12

23

19

7

3

6

23

19

Figure 417: links from town A

396 Developing Numeracy in Further Education

Notice that the distances are only temporary solutions at this stage. It may be possible to

reach some of the towns by a shorter route. (This is indeed the case for town C, which could

be reached in only 13 km by travelling via town B.)

We now look at the temporary distances and choose the lowest of these. This is the

distance of 6 km for town B. This must be the shortest distance to town B. Any other route

to town B would involve travelling via one of the other nodes whose distance from the start

point is already more than 6 km. We can therefore make the distance to town B a

permanent solution. We now examine the routes from town B to any other nodes which

still only have temporary distances allocated:

Figure 418: links from town B

If we travel to town D via town B, the total distance would be 18 km. This is an

improvement on the previous value of 23 km, so we can update node D. In a similar way, it

is only 13 km to reach town C via town B, which is an improvement on the previous value of

19 km. The diagram now becomes:

Figure 419: updated distances via town B

The algorithm can now be repeated. We look for the smallest of the temporary distances,

which in this case is 13 km for town C. This must be the shortest distance from the start

B

A

C

D

6
12

23

19

7

3

6

23

19

B

A

C

D

6
12

23

19

7

3

6

18

13

Chapter 13: Algorithms for problem solving 397

point to town C. The only other option we have not yet considered is to reach town C via

town D. This could not give a shorter route, as the distance to D is already greater. We can

therefore record the shortest distance to town C as permanent. We then check for links

from town C to any other nodes which still have a temporary distance allocated.

Figure 420: link from town C

Only the link to town D remains to be processed. We calculate that this node could be

reached in 16 km via town C, which is an improvement on the previous distance of 18 km.

The node can therefore be updated.

Figure 421: updated distance to town D via town C

Town D is the lowest (and only) remaining temporary node, so the distance of 16 km can be

made permanent.

We have now correctly calculated the shortest possible distances from the start point to

each of the other nodes in the network, but how can this help with our original task to find

the shortest route from town A to town D? The answer is to keep a record of the previous

node as each distance is recorded or updated:

B

A

C

D

6
12

23

19

7

3

6

18

13

B

A

C

D

6
12

23

19

7

3

6

16

13

398 Developing Numeracy in Further Education

Figure 422: parent nodes for shortest travelling distances to each town

Working backwards from the destination D, we find that this was reached from town C.

Town C was reached from town B, and town B was reached from the starting point A. The

shortest route has therefore been found:

 town A  town B  town C  town D

Let us now consider a more realistic example:

A student wishes to travel from Aberystwyth to Dublin by the cheapest route.

Possible options are:

 Travel by train to Manchester airport. Fly directly to Dublin, or fly to Belfast

and complete the journey by train.

 Travel by train to London airport, then fly to Dublin.

 Travel by train to Cardiff, then complete the journey to Dublin by train and

ferry.

Fares for different sections of the possible routes are shown in figure 423 below.

A computer would use a data table when solving the problem. We begin by listing the

nodes of the network. Additional columns are provided in the table for the cost of the fare

to each node, status as temporary, or permanent if we know that this is now the lowest

possible fare. A column is also provided to record the parent node linking backwards along

the route.

NODE COST STATUS PARENT

Aberystwyth 0 permanent

Belfast - temporary

Cardiff - temporary

Dublin - temporary

London - temporary

Manchester - temporary

B

A

C

D

6
12

23

19

7

3

6

16

13

parent node C

parent node B

parent node A

Chapter 13: Algorithms for problem solving 399

Figure 423: fare options for travel from Aberystwyth to Dublin

We begin at Aberystwyth. This has links to Cardiff, London and Manchester. We record the

fares in each case, and set the parent node for each of these locations as Aberystwyth.

NODE COST STATUS PARENT

Aberystwyth * 0 permanent

Belfast - temporary

Cardiff 49.70 temporary Aberystwyth

Dublin - temporary

London 68.10 temporary Aberystwyth

Manchester 40.70 temporary Aberystwyth

We identify Manchester as the temporary node with the lowest cost of 40.70. This is now

set to permanent, and becomes the current node.

NODE COST STATUS PARENT

Aberystwyth 0 permanent

Belfast - temporary

Cardiff 49.70 temporary Aberystwyth

Dublin - temporary

London 68.10 temporary Aberystwyth

Manchester * 40.70 permanent Aberystwyth

Belfast

Manchester

Aberystwyth

London
Cardiff

Dublin

air

£56.69

rail

£40.70
rail

£36.00

rail

£68.10

rail

£39.00

rail

£28.00

air

£85.00

9

rail and ferry

£58.80

rail

£49.70
air

£63.25

400 Developing Numeracy in Further Education

Figure 424: links from Manchester to other temporary nodes

Manchester has links to the temporary nodes Belfast, London and Dublin. We can calculate

the total fares to these towns via Manchester. The fares to Belfast and Dublin can be

recorded and their parent nodes set to Manchester. However, the fare to London via

Manchester of £76.70 would be more expensive than travelling directly from Aberystwyth.

Belfast

Manchester

Aberystwyth

London
Cardiff

Dublin

air

£56.69

rail

£40.70
rail

£36.00

rail

£68.10

rail

£39.00

rail

£28.00

air

£85.00

9

rail and ferry

£58.80

rail

£49.70
air

£63.25

0

40.70

68.10
49.70

Belfast

Manchester

Aberystwyth

London
Cardiff

Dublin

air

£56.69

rail

£40.70
rail

£36.00

rail

£68.10

rail

£39.00

rail

£28.00

air

£85.00

9

rail and ferry

£58.80

rail

£49.70
air

£63.25

0

40.70

68.10
49.70

97.39

125.70

Figure 425: fares updated from Manchester

Chapter 13: Algorithms for problem solving 401

Now that the Manchester node has been processed, Cardiff becomes the temporary node

with the lowest cost of 49.70. This is now set to permanent, and becomes the current node.

Cardiff has links to the temporary nodes London and Dublin. We calculate the total fares to

these towns. The fare to London via Cardiff would be more expensive than the value already

shown, so this is ignored. The fare to Dublin is less than the current value of 125.70, so the

cost is updated and the parent is re-set to Cardiff.

Figure 426: fares updated from Cardiff

We now identify London as the temporary node with the lowest cost of 68.10. This is set to

permanent, and becomes the current node. London has a link to the temporary node

Dublin. However, the fare to Dublin via London would be more expensive than the value

already shown, so this is ignored.

NODE COST STATUS PARENT

Aberystwyth 0 permanent

Belfast 97.39 temporary Manchester

Cardiff * 49.70 permanent Aberystwyth

Dublin 108.50 temporary Cardiff

London 68.10 temporary Aberystwyth

Manchester 40.70 permanent Aberystwyth

Belfast

Manchester

Aberystwyth

London
Cardiff

Dublin

air

£56.69

rail

£40.70
rail

£36.00

rail

£68.10

rail

£39.00

rail

£28.00

air

£85.00

9

rail and ferry

£58.80

rail

£49.70
air

£63.25

0

40.70

68.10
49.70

97.39

108.50

402 Developing Numeracy in Further Education

Figure 427: checking for fare updates from London

We now identify Belfast as the temporary node with the lowest cost of 97.39. This is now

set to permanent, and becomes the current node. Belfast has a link to the final temporary

node of Dublin. The fare to Dublin via Belfast would be more expensive than the value

already shown, so this is ignored.

We identify Dublin as the only remaining temporary node. This is set to permanent, and the

algorithm ends. We have now solved the network and have obtained the lowest fares from

Aberystwyth to each of the other nodes. Returning to our original task of finding the

cheapest route, we can work back from Dublin, using the entries in the parent column to

determine each previous node along the route:

Dublin is reached from Cardiff

Cardiff is reached from Aberystwyth.

The student should travel by train to Cardiff, then take the train and ferry connections to

Dublin.

NODE COST STATUS PARENT

Aberystwyth 0 permanent

Belfast * 97.39 permanent Manchester

Cardiff 49.70 permanent Aberystwyth

Dublin 108.50 temporary Cardiff

London 68.10 permanent Aberystwyth

Manchester 40.70 permanent Aberystwyth

Belfast

Manchester

Aberystwyth

London
Cardiff

Dublin

air

£56.69

rail

£40.70
rail

£36.00

rail

£68.10

rail

£39.00

rail

£28.00

air

£85.00

9

rail and ferry

£58.80

rail

£49.70
air

£63.25

0

40.70

68.10
49.70

97.39

108.50

Chapter 13: Algorithms for problem solving 403

Travelling salesman problem

Another common task for route planning software is to find the shortest or quickest way in

which a journey can be made around series of points, visiting each point just once and then

returning to the start. This is known as the travelling salesman problem:

A business in Dolgellau in North Wales produces craft items. Orders are to be

delivered to shops in: Aberystwyth, Caernarfon, Holyhead and Rhyl. Find the best

route for the delivery van to take.

We begin by compiling a table of the distances in km between the delivery locations:

 Dolgellau Aberystwyth Caernarfon Holyhead Rhyl

Dolgellau 54 70 115 89

Aberystwyth 125 170 139

Caernarfon 46 63

Holyhead 87

A possible route can be found using the nearest neighbour algorithm:

We choose a starting point for the delivery journey. The nearest town is selected,

and set as the next point on the route. From the town we have now reached, we

then select the nearest of the remaining towns which have not yet been visited and

add this to the route. The process continues until every town has been visited, then

we return directly to the starting point to complete the circular route.

Figure 428:

location map of North Wales

404 Developing Numeracy in Further Education

We choose Dolgellau as the starting point for the route.

From Dolgellau, the nearest node is Aberystwyth at 54 km

From Aberystwyth, the nearest unvisited node is Caernarfon at 125 km

From Caernarfon, the nearest unvisited node is Holyhead at 46 km

From Holyhead, the last unvisited node is Rhyl at 87 km

The return link to Dolgellau is 89 km

This makes a total journey distance of 401 km. The route is illustrated in figure 429 below:

Figure 429: network diagram for the delivery locations

A problem with the nearest neighbour algorithm, in contrast to Dijkstra's algorithm, is that it

does not guarantee to find the best solution to the problem. We can explore this by trying

an experiment:

Since every town is visited just once, the shortest route should not depend on where in the

loop we start.

 If we choose instead to make Aberystwyth the starting point:

From Aberystwyth, the nearest node is Dolgellau at 54 km

From Dolgellau, the nearest unvisited node is Caernarfon at 70 km

From Caernarfon, the nearest unvisited node is Holyhead at 46 km

From Holyhead, the last unvisited node is Rhyl at 87 km

The return link to Aberystwyth is 139 km

54

Dolgellau

Rhyl Holyhead

Caernarfon

Aberystwyth

70
115

89

125

170 139

46 63

87

Chapter 13: Algorithms for problem solving 405

This gives a slightly shorter total journey distance of 396 km. The route is illustrated in figure

430 below.

Figure 430: route generated by the nearest neighbour algorithm, starting from Aberystwyth

The uncertainty in the solution can present difficulties, particularly for large and complex

networks where many different starting points for a route are possible. We do, however,

have a way of determining a lower limit, below which the solution cannot lie. To do this:

Temporarily remove one of the nodes from the network, for example Aberystwyth.

We then find the shortest way of linking together the remaining four nodes. This can

be done using link distances of 46 km, 63 km and 70 km as shown in figure 431.

Re-attach the missing node for Aberystwyth, and connect it to the network by the

two shortest possible links of 54 km and 125 km. as shown in figure 432.

In the first step, we connected all but one of the nodes using the shortest possible distances.

A continuous loop around these nodes would have at least this length, and probably be

longer. The missing node was then reattached using the two shortest distances possible.

This node would have to have two links of at least these lengths in the continuous circuit.

We can therefore say with certainty that no true circuit could have a shorter total distance

than this set of links. The total length we have obtained is 358 km.

We are able to say that the shortest possible route around all the points, returning to the

start, must be at least 358 km, and is less than or equal to the distance of 396 km which we

found earlier.

54

Dolgellau

Rhyl Holyhead

Caernarfon

Aberystwyth

70
115

89

125

170 139

46 63

87

406 Developing Numeracy in Further Education

Figure 432: network after replacing and linking the node

54

Dolgellau

Rhyl Holyhead

Caernarfon

Aberystwyth

70
115

89

125

170
139

46 63

87

Figure 431: network after removing Aberystwyth and linking the remaining nodes by the shortest distances

54

Dolgellau

Rhyl Holyhead

Caernarfon

Aberystwyth

70
115

89

125

170 139

46 63

87

Chapter 13: Algorithms for problem solving 407

Although the nearest neighbour algorithm has given a reasonable solution to this simple

problem, difficulties can occur with larger networks. It is not unusual for figure-eight loops

to be created, as in figure 433, leading to a greater total journey distance. One solution is

to try a variety of different starting points for the circuit, as we did earlier, in the hope of

obtaining the shortest route. However, this can be very time consuming. A better option is

to use an optimisation algorithm to improve the initial result. A shorter route through the

same set of points is shown in figure 434.

A simple optimisation method is to take each group of three adjacent points along the

route, then check the possible set of connections between the points. The shortest set of

links is selected.

Figure 433:

initial route through a set

of points produced by the

nearest neighbour

algorithm

Figure 434:

improved route through

the set of points after

optimisation

408 Developing Numeracy in Further Education

 If three points are labelled A, B and C, then a total of six different sequences are possible:

Figure 435: alternative connection sequences for three points A, B and C

Chapter 13: Algorithms for problem solving 409

To carry out the optimisation procedure, we begin at the first point of the route. We then

select the next three points, calling these A, B and C. The different sequences shown in

figure 435 above are then tested, and the shortest selected. The sequence of the points in

the original route can then be rearranged if necessary.

We then move forward one node, and carry out optimisation on the next three points A, B

and C. This procedure is repeated until the route is completed and we have returned to the

starting point.

The route may still not be the best we can find. The complete optimisation sequence can be

carried out on the route as many times as necessary, until no further improvement in the

total distance can be achieved.

Sorting

A common requirement in many types of computer program is to sort data into either

alphabetical, numerical or date order. For example: a database of customers might be

sorted alphabetically by surname, or a spreadsheet of students' examination results might

be sorted into numerical order of the marks awarded.

Whilst general purpose computer software is available for carrying out most routine

administrative tasks, it may be necessary for a business or organisation to develop its own

specialist software for particular purposes. Programs are very likely to have a requirement

to sort data at some stage. The numeracy skills of pattern recognition and problem solving

will be important to the programmers who develop the sorting algorithms for this software.

A simple sorting method is the bubble sort. To demonstrate how this works, we will take

the series of words:

goat rat pig fox cow owl

and attempt to sort them into alphabetical order. We move down the list, comparing each

pair of words in turn. If the order of any word pair is incorrect, the words are exchanged.

Figure 436: first pass through a list of words during a bubble sort

goat

rat

pig

fox

cow

owl

goat

rat

pig

fox

cow

owl

goat

pig

rat

fox

cow

owl

goat

pig

fox

rat

cow

owl

goat

pig

fox

cow

rat

owl

410 Developing Numeracy in Further Education

Examining the sequence in figure 436 above, we see that:

 goat and rat are already in correct alphabetical order

 rat and pig are in incorrect order so they are exchanged

 rat and fox are in incorrect order so they are exchanged…

At the end of the first pass through all the data, we have the sequence:

This is not yet the correct alphabetical sequence, but words nearer the start of the sequence

have 'bubbled up' towards the top of the list – hence the name bubble sort.

We use the modified sequence as the starting point for another pass through the data:

Figure 437: second pass through the list of words during the bubble sort

We now have the sequence:

This is still not in correct alphabetical order, so another pass is carried out:

Figure 438: third pass through the list of words during the bubble sort

goat

pig

fox

cow

owl

rat

goat

pig

fox

cow

owl

rat

goat

pig

fox

cow

owl

rat

goat

fox

pig

cow

owl

rat

goat

fox

cow

pig

owl

rat

goat

fox

cow

owl

pig

rat

goat

fox

cow

owl

pig

rat

goat

fox

cow

owl

pig

rat

fox

goat

cow

owl

pig

rat

fox

cow

goat

owl

pig

rat

fox

cow

goat

owl

pig

rat

fox

cow

goat

owl

pig

rat

Chapter 13: Algorithms for problem solving 411

The list is still not quite in the correct order. One further pass through the data will be

needed to bring cow to the top of the list. A large number of comparisons have been

necessary and the algorithm is not particularly efficient. If many items have to be sorted by

this method, the program would be slow. Better sorting methods are needed for large data

sets.

An improved sorting method, the quicksort algorithm, makes use of the technique of

recursion.

Recursion involves carrying out a version of a task within the task itself. A simple example is

to produce a geometric pattern by recursion.

We begin by drawing a square.

Four smaller squares are then drawn with their centres at each of the corners of the

larger square.

Further smaller squares can then be added at the corners of each of these small

squares, producing a pattern of any chosen depth.

Figure 439: developing a recursive geometric pattern

The quicksort algorithm begins with an unsorted set of data. One data item, often the first

in the sequence, is selected:

Figure 440: pivot selected as the first item in the unsorted list

The program then compares the reference item, known as the pivot, to each of the other

items in the data set. All items with lower values are moved in front of the pivot, whilst all

items with higher values remain after the pivot.

38

412 Developing Numeracy in Further Education

Figure 441: division of the original list into two sub-lists

We have now divided the original list into two unsorted sub-lists, separated by the pivot

item. We know that the pivot is now in its correct position, as any rearrangement which is

necessary in the sub-lists will not affect the pivot.

The sorting procedure is now repeated recursively on each of the sub-lists. New pivot

values are used to make comparisons to create further sub-lists:

Figure 442: further sorting of a sub-list by recursion

Recursion continues until all sub-lists have been reduced to single items. At this point, the

set of data will be fully sorted.

To demonstrate the quicksort algorithm in action, consider the series of random words for

methods of transport. These words need to be sorted into alphabetical order.

plane van truck bus boat taxi ship bike car train

We will select the word 'plane' at the start of the sequence as the pivot. We then decide

whether each of the other words would come before () or after () the pivot value in

alphabetical order.

plane van truck bus boat taxi ship bike car train

pivot         

38

unsorted sub-list, but all items

have a value less than 38

unsorted sub-list, but all items

have a value greater than 38

38 21

38 21

Chapter 13: Algorithms for problem solving 413

We make a new copy of the data, putting all the items before the pivot value on the left,

followed by the pivot itself, then all the items after the pivot on the right.

bus boat bike car plane van truck taxi ship train
    pivot     

Although the groups of data to the left and right of the pivot are not yet sorted, the pivot

itself must be in the correct position in the sequence. Any further sorting cannot alter its

position.

The process is now repeated for the groups of unsorted data to the left and right of the

pivot. The new comparison values will be 'bus' and 'van'.

bus boat bike car plane van truck taxi ship train

pivot     pivot    

Within each unsorted group, we decide whether each word comes before or after the pivot

value.

The words in each unsorted group are again rearranged, so that words before the pivot are

listed first, then the pivot itself, then the words which come after the pivot value in

alphabetical order.

boat bike bus car plane truck taxi ship train van
  pivot       pivot

The pivot values 'bus' and 'van' are now in correct positions in the sequence. However, 'car'

must also be in a correct position as it is a single item which cannot be exchanged with any

other word.

The sort continues by creating pivot comparison values for the remaining unsorted groups.

boat bike bus car plane truck taxi ship train van

pivot     pivot    

Rearranging the remaining data items gives:

bike boat bus car plane taxi ship train truck van
 pivot       pivot 

414 Developing Numeracy in Further Education

The pivot items 'boat' and 'truck' are now in correct positions. The single item 'bike' must

also be correct. Sorting will continue with one remaining group of items.

bike boat bus car plane taxi ship train truck van
     pivot    

The final rearrangement completes the sorting.

bike boat bus car plane ship taxi train truck van
      pivot   

We can see that versions of the sorting method are taking place within itself, so the

problem can be solved by recursion.

It was stated earlier that the quicksort algorithm is a faster and more efficient sorting

method than the bubble sort algorithm. Let us consider why this is the case.

The efficiency, or order, of algorithms is often specified by means of big-O notation. This is

a way of describing the effect on the sorting time if the amount of data is increased.

Let us first examine the bubble sort algorithm. Without worrying too much about the exact

sorting mechanism, we can identify two general steps which are required to put the data

items into their correct position in a list:

 each item of data must be selected

 the item of data must be compared to each of the other data items

Each of these processes will take a certain amount of processing time, and each will depend

on the number of data items n which are present. If the number of data items is doubled,

then both processes will take twice as long. The overall effect will be to make the sorting

four times slower. We say that the order of the sorting method is:

𝑂(𝑛2)

which means that the overall time for the algorithm is proportional to the square of the

number of data items.

Turning now to the quicksort, we can again say that two processes are involved:

 each item of data must be selected

 the item of data must be compared to each of the other items in the sub-list

However, increasing the number of data items makes only a small change to the average

size of the sub–lists. Doubling the number of data items only adds one larger list at the top

level of the recursion, with all the sub-lists below this remaining the same size. Increasing

Chapter 13: Algorithms for problem solving 415

the amount of data by 256 times would only add eight extra levels to the recursion tree, so

there would be little change to the average length of the sub-lists which are being sorted.

It is found that the order of the quicksort algorithm is:

𝑂(𝑛 log 𝑛)

The sorting time will be proportional to the number of data items n multiplied by the

logarithm of this number.

We can see why a quicksort is faster than a bubble sort by plotting graphs of the two

functions n2 and n log n:

Figure 443: graphs of n2 and n log n

Whilst the sorting time for quicksort increases in an almost linear manner as the number of

data items is increased, the sort time for the bubble sort increases as a steepening upwards

curve. For large amounts of data, there will be a major advantage in using the quicksort

method. However, with small amounts of data there is little difference in speed, and

programmers may prefer to use the bubble sort algorithm which is simpler to program.

bubble sort n2

quicksort n log n

time

items sorted

416 Developing Numeracy in Further Education

Encryption

It is often important to encrypt computer data, for example when it is sent over a network

and might be intercepted by an unauthorised person. An important area of mathematics

focuses on the development of secure and efficient methods of data encryption, and often

involves the development of complex algorithms.

The data transmitted over a network or stored on digital media is usually a series of small

numbers representing letters of the alphabet, digits or other keyboard characters. A system

in common use is the American Standard Code for Information Interchange (ASCII) which

represents the characters on a standard English language keyboard by numbers in the range

from 0 to 255. In this system, character 'A' has the value 65, 'B' is 66, 'C' is 67, and so on…

Cyphers work on the principle of inverse functions. We are familiar with the idea of some

mathematical operations being the reverse of others. For example, we can reverse an

addition by means of a subtraction:

 65 + 6 = 71 71 – 6 = 65

An ASCII code 65 representing the letter A could be encrypted by adding 6, so that the code

transmitted is 71, representing the letter G. All other characters in the message could be

encrypted in the same way. For example, the message:

 HELLO

becomes

 NKRRU

If the encryption key value of 6 is known, the message can be decrypted by subtracting this

from the ASCII code values received. This method of moving letters of the alphabet forward

by a set number of places was used in Roman times, and is known as the Caesar Cypher.

However, the cypher can easily be broken by analysing the frequency of letters in the

message: the characters most frequently occurring in the encrypted message are likely to be

common letters such as E, T or A.

More complex methods of encryption have been developed, such as the Enigma Cypher

used during World War 2 which relied on machines to encrypt the code with a complex

mathematical function, then decrypt by means of the inverse function. Although much

more secure, a difficulty still existed with this system; details of the key settings had to be

transferred in advance from the sender to the receiver so that the necessary information

was available to decrypt the message. This could present a security risk if the key fell into

the wrong hands.

A major breakthrough occurred when methods were discovered for double key encryption.

In this system, one key is used to encrypt the message, then a different key is used for

decryption. Even if the encryption key is known, the decryption key cannot be calculated

and the message remains secure.

Chapter 13: Algorithms for problem solving 417

As an example, consider a customer buying goods from an on-line store, then paying by

credit card. It is important that the customer's card details are secure when transmitted

over the Internet to the store. Single key encryption would be unsuitable, as sending the

key to the customer would pose a security risk. If the key was intercepted by a criminal, this

could subsequently be used to decrypt the credit card details.

In the double key system, a pair of keys is created. One, termed the public key, is made

freely available as part of the web page of the store. The web page uses this to encrypt the

bank details when the customer sends their order. Knowledge of the public key does not

make it possible to decrypt the message. This can only be carried out using the other

member of the key pair, the private key, which is held securely in the store.

Figure 444: use of a double key encryption system

The success of the double key method depends on finding a mathematical function whose

inverse cannot be determined from the available information in the public key. The

function and inverse chosen were rather unusual ones. Encryption is carried out using a

modulus function. To do this:

The unencrypted value, such as the ASCII code 65 for 'A', is given the name m

The encrypted value, which will be sent securely over the Internet, is called c

Two numbers, called e and n, are used during the encryption process.

The value m is then encrypted to produce c using the equation:

 (𝑚𝑒) 𝑀𝑂𝐷 𝑛 = 𝑐

The value m is raised to the power e, then the remainder found when the number n is

subtracted as many times as possible.

Customer Shop

public key private key

public key available

to customers

bank details

encrypted using the

public key

bank details decrypted

using the private key

418 Developing Numeracy in Further Education

For example, suppose that the ASCII code 65 is to be transmitted. Any suitable values could

be selected for the numbers e and n which will encrypt the data.

We will choose e = 3 and n = 143.

Carrying out the steps of the encryption:

(653) 𝑀𝑂𝐷 𝑛 = 𝑐

493039 𝑀𝑂𝐷 𝑛 = 𝑐

493039 𝑀𝑂𝐷 143 = 118

65 cubed is 493039. Subtracting 143 repeatedly from 493039 leaves a remainder of 118.

This is the encrypted value which will be transmitted.

Figure 445: encryption using key values e and n

We now need an inverse function which can convert 118 back to the original value. This is:

 (𝑐𝑑) 𝑀𝑂𝐷 𝑛 = 𝑚

where c is the encrypted value and m is the original message. n is the same modulus value

which was used during the encryption.

We also need another value d. For reasons which will be explained shortly, a suitable value

for d is 221.

Figure 446: decryption using key values d and n

To operate the double key encryption system, the customer in the shop example would

need to know the encryption values e and n. These can be made publicly available.

However, the message cannot be decrypted unless the value of d is also known. This would

be held securely on the shop's computer system and not revealed to unauthorised persons.

The security of the double key encryption method depends on it being impossible, or very

difficult within a reasonable time scale, to find the value of d when only e and n are known.

message

65

encrypted message

118

e = 3

n = 143

message

65

encrypted message

118

d = 221

n = 143

Chapter 13: Algorithms for problem solving 419

To operate double key encryption, we need a way of generating a set of values e, n and d

which can be used in the public and private keys. In practice, n is chosen to be a very large

number which is produced by multiplying together two large prime numbers which we will

call p and q. For example, we might choose:

𝑝 = 1889, 𝑞 = 3547

𝑛 = 1889 × 3547 = 6,700,283

Only knowing the product n makes it very difficult to find p and q. Real systems use even

larger values so the task becomes effectively impossible. For example the value produced

after multiplying two large prime numbers might be:

Figure 447: example of a secure large encryption value produced by multiplying prime numbers (Vance, 2014)

It would take a long time to find the two prime numbers which multiply to give this result!

The significance is that the decryption value d can only be found if we know the two prime

numbers p and q which were used to calculate n.

The method used to find d from p and q is the Extended Euclidean Algorithm. The

procedure is quite complex, but can be illustrated by working through an example:

 We begin by choosing two very large prime numbers p and q. To keep things simple

in this example, we will set:

p = 5, q = 11

 We now calculate a value ϕ known as the Euler totient function. This is done by

subtracting 1 from each of p and q, then multiplying the result:

𝜑 = (5 − 1)(11 − 1) = 40

420 Developing Numeracy in Further Education

 We now choose a value for the encryption key e. It is important that this does not

share a common factor with ϕ. A value of 7 would be suitable for e, since 7 does not

divide into 40.

 The other encryption value n is the product of p and q:

𝑛 = 5 × 11 = 55

It now just remains to find the decryption key d using the Extended Euclidean Algorithm.

Although none of the steps of the algorithm involves difficult mathematics, the sequence

can be difficult to remember. In practice, the key values would be generated by a computer

program which has been set up to carry out the correct sequence of steps.

We begin by writing the value of ϕ at the top of two columns. Beneath this in the first

column is the value of e, and in the second column is written 1:

40 40

7 1

We now divide ϕ by e, writing just the whole number result and ignoring any remainder.

40 40

7 1

5

We multiply this result by each of the second row values:

40 40

7 1

5 * 7 = 35 5 * 1 = 5

These totals are then subtracted from the values on the top row:

40 40

7 1

(40 – 35) = 5 (40 – 5) = 35

These results now form the third row of the table:

40 40

7 1

5 35

The first row of the table can now be discarded:

7 1

5 35

Chapter 13: Algorithms for problem solving 421

The steps carried out above are now repeated:

We divide the left column value of the first row by the left column value of the second row,

writing the whole number result and ignoring any remainder.

7 1

5 35

1

We multiply this result by each of the second row values:

7 1

5 35

1 * 5 = 5 1 * 35 = 35

These totals are then subtracted from the values on the top row:

7 1

5 35

(7 – 5) = 2 (1-35) = -34

Only positive results can be accepted. The negative value of -34 is converted to a positive

value by adding ϕ:

-34 + 40 = 6

These results now form the third row of the table:

7 1

5 35

2 6

The first row of the table can again be discarded:

5 35

2 6

We need to carry out the sequence of steps once more:

We divide the left column value of the first row by the left column value of the second row ,

writing the whole number result and ignoring any remainder.

5 35

2 6

2

422 Developing Numeracy in Further Education

We multiply this result by each of the second row values:

5 35

2 6

2 * 2 = 4 2 * 6 = 12

These totals are then subtracted from the values on the top row:

5 35

2 6

(5 – 4) = 1 (35-12) = 23

These results now form the third row of the table:

7 1

5 35

1 23

The left hand column of the final row now contains a value of 1, which means that a solution

has been found. The required value for the decryption code d is the corresponding value in

the right hand column. We therefore have:

d = 23

All the values required to operate the double key encryption system are now available for

use:

n = 55, e = 7, and d = 23

n and e together form the public key, whilst n and d together form the private key.

Game strategy

Algorithms are important in planning strategies for success in games. Apart from a role in

games developed for recreation, algorithms can be important in modelling complex real

world scenarios such as economic crises or military conflicts. For many of these applications,

pattern recognition and the estimation of probabilities are important.

Noughts and crosses

We begin with the simple and familiar game of Noughts and Crosses. This is played on a grid

of three rows of three squares. Two players, designated as nought 'O' or cross 'X', take

turns to add their symbols to the board. The objective is to achieve a line of three noughts

or crosses, either horizontally, vertically or diagonally.

Chapter 13: Algorithms for problem solving 423

As an interesting challenge, computing students can produce a version of the game where

one player competes against the computer. To achieve this, the computer must be

programmed with a game strategy.

Figure 448: noughts and crosses game, including comments to explain the computer strategy

The player is designated as X, and the computer as O.

After each move by the player, the computer takes over control and can make a move. It

must, however, first check whether the player has just completed a line of three Xs and has

won the game.

If the game is continuing, the computer next checks whether there is a line with two Os and

a blank space. If so, the computer can complete the final O and win the game.

If the game is still continuing, the computer must try to make a move. We can see that not

all the squares on the board are of equal importance in terms of strategy. The centre

square can become part of the largest number of winning lines:

Figure 449:

winning lines passing through

the centre square

424 Developing Numeracy in Further Education

Figure 450: flowchart for the noughts and crosses computer game

Chapter 13: Algorithms for problem solving 425

There is an advantage to the computer to select the centre square if this is still available.

If the centre square is already occupied, then the next best strategy is to select a corner

square if available.

If more than one corner square is empty, the computer chooses the corner randomly. This

introduces an element of chance and allows the player some opportunity to beat the

computer.

If all corner squares are already filled, then the final option is to select an edge square if

available.

If more than one edge square is empty, the computer again chooses randomly.

Once the computer has made its move, control returns to the player. However, if there are

no squares still free on the board then the game will have ended in a draw.

Solitaire

Our next example is the game of solitaire. This is played on a board containing a cross-

shaped pattern of holes into which pegs can be inserted. At the start of the game, all the

holes, with the exception of the central hole, contain pegs (figure 453).

Solitaire is played by a single player. The objective is to remove all but one of the pegs from

the board, leaving the last peg in the central hole. A peg can be removed by another peg

jumping over it to reach an empty hole. Moves can take place horizontally or vertically, but

not diagonally.

In this section, we give an algorithm for completing the solitaire puzzle. Computing students

can be set the challenge of producing an automated solution sequence. An animation can

be created using graphics drawn by the program.

Figure 451:

winning lines passing through a

corner square

Figure 452:

winning lines passing through

an edge square

426 Developing Numeracy in Further Education

To write the game algorithm, a system will be required for specifying the moves. We begin

by creating a coordinate system for the holes. The board is divided into five areas called:

North, South, East, West and Centre, as shown in figure 454. Within each of these areas,

individual hole positions are identified by a horizontal coordinate, followed by a vertical

coordinate.

Figure 454: coordinate system for the Solitaire board

Figure 453:

Solitaire board at the start of

the game

North

South

East West

Centre

1 2 3

1

2

S31 W23

Chapter 13: Algorithms for problem solving 427

The first objective is to clear most of the pegs from the East section of the board. This is

achieved in a series of moves:

Figure 455: sequence of moves to clear the East section of the board

E12 – C22

N32 – C32

E21 – C31

428 Developing Numeracy in Further Education

Figure 455(cont.): sequence of moves to clear the East section of the board

E23 – E21

C21 – E11

E21 – C31

Chapter 13: Algorithms for problem solving 429

This completes the clearance of the East area of the board. The North area can now be

cleared in a similar way, using the sequence of moves listed in figure 456.

Figure 456: sequence of moves to clear the North section of the board

The West area can be cleared in a similar way, using the sequence of moves in figure 457.

Figure 457: sequence of moves to clear the West section of the board

We finally clear the South section of the board, leaving an arrow-shaped pattern in the

centre of the board, as shown in figure 458 below.

W21-C21

N11-C11

N31-N11

C12-N12

N11-C11

S11-C12

W13-C13

W11-W13

C23-W23

W13-C13

430 Developing Numeracy in Further Education

Figure 458: sequence of moves to clear the South section of the board

It is now possible to move one peg around the board in a series of jumps, removing pegs as

it goes and leaving a simple T-shape.

Figure 459: sequence of moves to create the final T-configuration

E13-C23

S32-C33

S12-S32

C32-S31

S32-C33

C12-N12

N12-N32

N32-C32

C32-S31

S31-S11

S11-C12

Chapter 13: Algorithms for problem solving 431

The game can be completed with the final sequence of moves shown in figure 460.

Figure 460: final set of moves to complete the solution

Summary

Algorithms have several features in common:

 During each cycle of the algorithm, a check may be carried out (e.g. whether words

are in the correct order, or whether a town can be reached by a shorter distance),

then some change may be made to the data (e.g. word order is changed, or a

distance total is updated).

 The algorithm steps may be repeated a number of times until some objective has

been achieved (e.g. a set of words are now in correct alphabetical order, or the

shortest distance for a journey has been found).

An algorithm can provide a sequence of instructions to guide a person through a complex

task (e.g. solving the solitaire puzzle) or provide a sequence of commands for a computer

program to carry out the task (e.g. generating sets of keys for double key encryption).

Design of efficient algorithms can require high levels of numeracy skills in problem solving,

pattern recognition, and perhaps knowledge of techniques in application of number,

geometry or algebra. Algorithms are often implemented by computer programs, so an

understanding of information technology systems may also be important.

C22-N22

W22-C22

C23-C21

N22-C22

