394 Developing Numeracy in Further Education

Algorithms for problem solving

A broader definition of numeracy extends far beyond arithmetic and the application of
number. Numeracy skills which are highly valued by employers include: problem solving in a
vocational context, the ability to work with information technology systems, and an ability
to convert between different representations of quantitative data using numbers, diagrams
or algebraic expressions as appropriate. All of these wider skills come together in the design
of algorithms.

An algorithm is a set of instructions for carrying out a task. This might be something as
familiar as a cookery recipe:

Extra Fruity Jam Tarts

Method

Turn the oven on to 180°C. Oil a muffin tin.
Roll out the pastry and cut into large circles.

Push the pastry circles into the muffin tin holes
to make cups.

Drop a small teaspoon of jam into the bottom of
each pastry cup.

Mix lemon juice into a bow! of cold water.

Peel, core and chop the apple and soak in the
lemon water, then drain and pat dry.

www.eatsamazing.co.uk

Figure 415: algorithm for making jam tarts

However, we tend to use the term algorithm most frequently when referring to sequences
of instructions in computer programs. Typically, an algorithm involves a multi-step
calculation, and its design can require a high level of numeracy and problem solving skills.

When presenting the design for an algorithm, the steps may be written in ordinary
language, as in the recipe example above, or may be displayed in the form of a flowchart or
other type of diagram.

The use of mathematical algorithms in computer programs has become increasingly
important as computer systems have become more powerful. Software can now
accomplish many of the complex tasks which were previously only possible through the
application of human intelligence. Examples which we will examine in this chapter include
journey planning, fast sorting of data, game playing, and data encryption.

We begin by investigating algorithms used in journey planning.

Chapter 13: Algorithms for problem solving 395

Dijkstra's algorithm
A frequent requirement in computer applications is to find the shortest, quickest, or

cheapest route from one place to another through a network of possible paths. To
demonstrate this task, we will consider a small network:

12

Figure 416: network of towns and journey distances

The nodes in the network, A — D represent four towns. The links between the nodes
represent roads, with distances shown in km. The network is represented diagrammatically,
so the links are not drawn to scale. We are simply interested in the topology of the network:
the way in which the nodes are connected.

The objective of the task is to find the shortest route from town A to town D, out of the
various routes which are possible. If we were to do this manually, we might make a few
simple calculations by mental arithmetic before deciding on the solution. However, if the
task is to be undertaken by a computer, then a very precise algorithm for checking all
possible routes must be specified. An efficient method for carrying out this task is Dijkstra's
algorithm. The same algorithm can be used by the computer to quickly find solutions to
much more complex and challenging route finding problems, such as choosing the shortest
route to travel by road from Cardiff, via the Channel Tunnel, to Budapest!

Returning to our simple network, the first step is to identify the towns which can be reached
directly from the starting point. We then record the distances travelled along the links.

6

23

19

C |19

Figure 417: links from town A

396 Developing Numeracy in Further Education

Notice that the distances are only temporary solutions at this stage. It may be possible to
reach some of the towns by a shorter route. (This is indeed the case for town C, which could
be reached in only 13 km by travelling via town B.)

We now look at the temporary distances and choose the lowest of these. This is the
distance of 6 km for town B. This must be the shortest distance to town B. Any other route
to town B would involve travelling via one of the other nodes whose distance from the start
point is already more than 6 km. We can therefore make the distance to town B a
permanent solution. We now examine the routes from town B to any other nodes which
still only have temporary distances allocated:

23

C | 19

Figure 418: links from town B

If we travel to town D via town B, the total distance would be 18 km. This is an
improvement on the previous value of 23 km, so we can update node D. In a similar way, it
is only 13 km to reach town C via town B, which is an improvement on the previous value of
19 km. The diagram now becomes:

18

C |13

Figure 419: updated distances via town B

The algorithm can now be repeated. We look for the smallest of the temporary distances,
which in this case is 13 km for town C. This must be the shortest distance from the start

Chapter 13: Algorithms for problem solving 397

point to town C. The only other option we have not yet considered is to reach town C via
town D. This could not give a shorter route, as the distance to D is already greater. We can
therefore record the shortest distance to town C as permanent. We then check for links
from town C to any other nodes which still have a temporary distance allocated.

18

C | 13

Figure 420: link from town C

Only the link to town D remains to be processed. We calculate that this node could be
reached in 16 km via town C, which is an improvement on the previous distance of 18 km.
The node can therefore be updated.

16

C | 13

Figure 421: updated distance to town D via town C

Town D is the lowest (and only) remaining temporary node, so the distance of 16 km can be
made permanent.

We have now correctly calculated the shortest possible distances from the start point to
each of the other nodes in the network, but how can this help with our original task to find
the shortest route from town A to town D? The answer is to keep a record of the previous
node as each distance is recorded or updated:

398 Developing Numeracy in Further Education

6 parent node A

12 16 parent node C

19

Cc |13 parent node B

Figure 422: parent nodes for shortest travelling distances to each town

Working backwards from the destination D, we find that this was reached from town C.
Town C was reached from town B, and town B was reached from the starting point A. The
shortest route has therefore been found:

town A - town B - town C - town D
Let us now consider a more realistic example:

A student wishes to travel from Aberystwyth to Dublin by the cheapest route.
Possible options are:

e Travel by train to Manchester airport. Fly directly to Dublin, or fly to Belfast
and complete the journey by train.

e Travel by train to London airport, then fly to Dublin.

e Travel by train to Cardiff, then complete the journey to Dublin by train and
ferry.

Fares for different sections of the possible routes are shown in figure 423 below.

A computer would use a data table when solving the problem. We begin by listing the
nodes of the network. Additional columns are provided in the table for the cost of the fare
to each node, status as temporary, or permanent if we know that this is now the lowest
possible fare. A column is also provided to record the parent node linking backwards along

the route.
NODE COST STATUS PARENT
Aberystwyth 0 permanent
Belfast - temporary
Cardiff - temporary
Dublin - temporary
London - temporary
Manchester - temporary

Chapter 13: Algorithms for problem solving

399

Belfast
._ Manchester
| air —
£56.69
rail
£28.00 | e
| air | £36.00
| £85.00 -
o
Dublin . air
N £63.25
rail and ferry '
£58.80 T

Cardiff Tl
£39.00 London

Figure 423: fare options for travel from Aberystwyth to Dublin

We begin at Aberystwyth. This has links to Cardiff, London and Manchester. \We record the

fares in each case, and set the parent node for each of these locations as Aberystwyth.

NODE COST STATUS PARENT
Aberystwyth * 0 permanent

Belfast - temporary

Cardiff 49.70 temporary Aberystwyth
Dublin - temporary

London 68.10 temporary Aberystwyth
Manchester 40.70 temporary Aberystwyth

We identify Manchester as the temporary node with the lowest cost of 40.70. This is now

set to permanent, and becomes the current node.

NODE COST STATUS PARENT
Aberystwyth 0 permanent

Belfast - temporary

Cardiff 49.70 temporary Aberystwyth
Dublin - temporary

London 68.10 temporary Aberystwyth
Manchester * 40.70 permanent Aberystwyth

400 Developing Numeracy in Further Education

Belfast
. Manchester
| air 40.70
£56.68
rail rail
£28.00 | £40.70
| J_Aberystwyth rail
N £36.00
| LN
.)
\\ rail
N | rail \£68.10
Dublin air II',I £49 ?D s
£63.25 | AN
f6: \
| N
. S,
il and ferry I) N
rail an —
~— -.________}
£58.80 .__I____
Cardiff ral d
£39.0p0 London
49,70
68.10

Figure 424: links from Manchester to other temporary nodes

Manchester has links to the temporary nodes Belfast, London and Dublin. We can calculate
the total fares to these towns via Manchester. The fares to Belfast and Dublin can be
recorded and their parent nodes set to Manchester. However, the fare to London via
Manchester of £76.70 would be more expensive than travelling directly from Aberystwyth.

Belfast
97.39 .___________ Manchester

| 40.70
rail il
£28.00 | £40.70 |

| ! Aberystwyth | rail

W\ | £36.00
VN
| \
._/-" \\ rail
rail \£68.10
- o \ \
Dublin \ £49.70 \\
A N,
125.70 \\
| N
. N,
rail and ferry ~—— . B \\‘
£58.80 e —
Cardiff rail
£30.00 London
48,70
68.10

Figure 425: fares updated from Manchester

Chapter 13: Algorithms for problem solving 401

Now that the Manchester node has been processed, Cardiff becomes the temporary node
with the lowest cost of 49.70. This is now set to permanent, and becomes the current node.
Cardiff has links to the temporary nodes London and Dublin. We calculate the total fares to
these towns. The fare to London via Cardiff would be more expensive than the value already
shown, so this is ignored. The fare to Dublin is less than the current value of 125.70, so the
cost is updated and the parent is re-set to Cardiff.

NODE COST STATUS PARENT
Aberystwyth 0 permanent
Belfast 97.39 temporary Manchester
Cardiff * 49.70 permanent Aberystwyth
Dublin 108.50 temporary Cardiff
London 68.10 temporary Aberystwyth
Manchester 40.70 permanent Aberystwyth
Belfast
97.39 @' - Manchester
air T ———
| —@ | %070
£56.69 A
rail 7 A ral
£28.00 | 7 7 £40.70 |
. Aberystwyth , ral
o air AN | £36.00
£85.00 _ VN ©
| / Y . 1
7 \\ il
. . rai
| rail \£68.10 |
Dublin gt \eag70
£63.25 | AN
108.50 N
N
B N RN
o o A
rail and ferry \\
£58.80 : =9
Cardiff rail
£39.00 London
49.70
£8.10

Figure 426: fares updated from Cardiff

We now identify London as the temporary node with the lowest cost of 68.10. This is set to
permanent, and becomes the current node. London has a link to the temporary node
Dublin. However, the fare to Dublin via London would be more expensive than the value
already shown, so this is ignored.

402 Developing Numeracy in Further Education

Belfast
97.39 G"""--—--- Manchester
| air g | 40.70
£56.69 A
rail - //’/rail
£28.00 | ~~ 7 sa070 |
| air @ Aberystwyth | rail
AN | £36.00
£85.00 Vo L9
"" ™ .
- ~, rail
-] rail \\‘:;58-10
Dublin e air \£49.70
£63.25 \
108.50 AN
™,
= = \ \\
rail and ferry RN
£58.80 G__-l_———
Cardiff @
£35.00 London
49.70
68.10

Figure 427: checking for fare updates from London

We now identify Belfast as the temporary node with the lowest cost of 97.39. This is now
set to permanent, and becomes the current node. Belfast has a link to the final temporary
node of Dublin. The fare to Dublin via Belfast would be more expensive than the value
already shown, so this is ignored.

NODE COST STATUS PARENT
Aberystwyth 0 permanent

Belfast * 97.39 permanent Manchester
Cardiff 49.70 permanent Aberystwyth
Dublin 108.50 temporary Cardiff
London 68.10 permanent Aberystwyth
Manchester 40.70 permanent Aberystwyth

We identify Dublin as the only remaining temporary node. This is set to permanent, and the
algorithm ends. We have now solved the network and have obtained the lowest fares from
Aberystwyth to each of the other nodes. Returning to our original task of finding the
cheapest route, we can work back from Dublin, using the entries in the parent column to
determine each previous node along the route:

Dublin is reached from Cardiff
Cardiff is reached from Aberystwyth.

The student should travel by train to Cardiff, then take the train and ferry connections to
Dublin.

Chapter 13: Algorithms for problem solving 403

Travelling salesman problem

Another common task for route planning software is to find the shortest or quickest way in
which a journey can be made around series of points, visiting each point just once and then
returning to the start. This is known as the travelling salesman problem:

A business in Dolgellau in North Wales produces craft items. Orders are to be
delivered to shops in: Aberystwyth, Caernarfon, Holyhead and Rhyl. Find the best
route for the delivery van to take.

1sCE ar
Halyhead ,peyperr

Figure 428:

location map of North Wales

Peellhelis
* Harloche

Barmiuth =

Aberdytl s

Cavdipoen Bay
Aberyst

We begin by compiling a table of the distances in km between the delivery locations:

Dolgellau Aberystwyth | Caernarfon Holyhead Rhyl
Dolgellau 54 70 115 89
Aberystwyth 125 170 139
Caernarfon 46 63
Holyhead 87

A possible route can be found using the nearest neighbour algorithm:

We choose a starting point for the delivery journey. The nearest town is selected,
and set as the next point on the route. From the town we have now reached, we
then select the nearest of the remaining towns which have not yet been visited and
add this to the route. The process continues until every town has been visited, then
we return directly to the starting point to complete the circular route.

404 Developing Numeracy in Further Education

We choose Dolgellau as the starting point for the route.

From Dolgellau, the nearest node is Aberystwyth at 54 km

From Aberystwyth, the nearest unvisited node is Caernarfon at 125 km
From Caernarfon, the nearest unvisited node is Holyhead at 46 km
From Holyhead, the last unvisited node is Rhyl at 87 km

The return link to Dolgellau is 89 km

This makes a total journey distance of 401 km. The route is illustrated in figure 429 below:

Holyhead Rhyl

87

Aberystwyth

Figure 429: network diagram for the delivery locations

A problem with the nearest neighbour algorithm, in contrast to Dijkstra's algorithm, is that it
does not guarantee to find the best solution to the problem. We can explore this by trying
an experiment:

Since every town is visited just once, the shortest route should not depend on where in the
loop we start.

If we choose instead to make Aberystwyth the starting point:

From Aberystwyth, the nearest node is Dolgellau at 54 km

From Dolgellau, the nearest unvisited node is Caernarfon at 70 km
From Caernarfon, the nearest unvisited node is Holyhead at 46 km
From Holyhead, the last unvisited node is Rhyl at 87 km

The return link to Aberystwyth is 139 km

Chapter 13: Algorithms for problem solving 405

This gives a slightly shorter total journey distance of 396 km. The route is illustrated in figure
430 below.

Holyhead 97 Rhyl
= —@
‘::\.:-:.-_::_\h ﬁn"l
R

Aberystwyth

Figure 430: route generated by the nearest neighbour algorithm, starting from Aberystwyth

The uncertainty in the solution can present difficulties, particularly for large and complex
networks where many different starting points for a route are possible. We do, however,
have a way of determining a lower limit, below which the solution cannot lie. To do this:

Temporarily remove one of the nodes from the network, for example Aberystwyth.
We then find the shortest way of linking together the remaining four nodes. This can
be done using link distances of 46 km, 63 km and 70 km as shown in figure 431.

Re-attach the missing node for Aberystwyth, and connect it to the network by the
two shortest possible links of 54 km and 125 km. as shown in figure 432.

In the first step, we connected all but one of the nodes using the shortest possible distances.
A continuous loop around these nodes would have at least this length, and probably be
longer. The missing node was then reattached using the two shortest distances possible.
This node would have to have two links of at least these lengths in the continuous circuit.
We can therefore say with certainty that no true circuit could have a shorter total distance
than this set of links. The total length we have obtained is 358 km.

We are able to say that the shortest possible route around all the points, returning to the
start, must be at least 358 km, and is less than or equal to the distance of 396 km which we

found earlier.

406 Developing Numeracy in Further Education

Holyhead

87

Caernarfon

f
89
/
/
/ 139
/
."lf.l
54 /
/
/
/
Aberystwyth

Figure 431: network after removing Aberystwyth and linking the remaining nodes by the shortest distances

Holyhead Rhyl

87

Caernarfon

g9

138

Aberystwyth

Figure 432: network after replacing and linking the node

Chapter 13: Algorithms for problem solving 407

Although the nearest neighbour algorithm has given a reasonable solution to this simple
problem, difficulties can occur with larger networks. It is not unusual for figure-eight loops
to be created, as in figure 433, leading to a greater total journey distance. One solution is
to try a variety of different starting points for the circuit, as we did earlier, in the hope of
obtaining the shortest route. However, this can be very time consuming. A better option is
to use an optimisation algorithm to improve the initial result. A shorter route through the
same set of points is shown in figure 434.

Figure 433:

initial route through a set
of points produced by the
nearest neighbour
algorithm

Figure 434:

improved route through
the set of points after
optimisation

A simple optimisation method is to take each group of three adjacent points along the
route, then check the possible set of connections between the points. The shortest set of
links is selected.

408 Developing Numeracy in Further Education

If three points are labelled A, B and C, then a total of six different sequences are possible:

ABC
C
A B
ACB
C
A
B
—
BAC —0
C
A
B
BCA e
\.___
C
A
B
CAB
o
C
A
._ B
CBA
C

Figure 435: alternative connection sequences for three points A, Band C

Chapter 13: Algorithms for problem solving 409

To carry out the optimisation procedure, we begin at the first point of the route. We then
select the next three points, calling these A, B and C. The different sequences shown in
figure 435 above are then tested, and the shortest selected. The sequence of the points in
the original route can then be rearranged if necessary.

We then move forward one node, and carry out optimisation on the next three points A, B
and C. This procedure is repeated until the route is completed and we have returned to the
starting point.

The route may still not be the best we can find. The complete optimisation sequence can be
carried out on the route as many times as necessary, until no further improvement in the
total distance can be achieved.

Sorting

A common requirement in many types of computer program is to sort data into either
alphabetical, numerical or date order. For example: a database of customers might be
sorted alphabetically by surname, or a spreadsheet of students' examination results might
be sorted into numerical order of the marks awarded.

Whilst general purpose computer software is available for carrying out most routine
administrative tasks, it may be necessary for a business or organisation to develop its own
specialist software for particular purposes. Programs are very likely to have a requirement
to sort data at some stage. The numeracy skills of pattern recognition and problem solving
will be important to the programmers who develop the sorting algorithms for this software.

A simple sorting method is the bubble sort. To demonstrate how this works, we will take
the series of words:

goat rat pig fox cow owl

and attempt to sort them into alphabetical order. We move down the list, comparing each
pair of words in turn. If the order of any word pair is incorrect, the words are exchanged.

Figure 436: first pass through a list of words during a bubble sort

goat ? goat goat goat goat
rat rat pig pig pig
pig pig ? rat fox fox
fox fox fox rat cow
cow cow CoOwW cow rat
owl owl owl owl owl

410 Developing Numeracy in Further Education

Examining the sequence in figure 436 above, we see that:

goat and rat are already in correct alphabetical order
rat and pig are in incorrect order so they are exchanged
rat and fox are in incorrect order so they are exchanged...

At the end of the first pass through all the data, we have the sequence:

This is not yet the correct alphabetical sequence, but words nearer the start of the sequence

goat

pig

fox

cow

owl

rat

have 'bubbled up' towards the top of the list — hence the name bubble sort.

We use the modified sequence as the starting point for another pass through the data:

goat ? goat goat goat goat
pig pig fox fox fox
fox fox 2 pig cow cow
cow cow cow pig owl
owl owl owl owl pig
rat rat rat rat rat

Figure 437: second pass through the list of words during the bubble sort

We now have the sequence:

This is still not in correct alphabetical order, so another pass is carried out:

goat

fox

cow

owl

pig

rat

goat ? fox fox fox fox
fox goat cow cow cow
cow cow ? goat goat goat
owl owl owl owl owl
pig pig pig pig pig
rat rat rat rat rat

Figure 438: third pass through the list of words during the bubble sort

Chapter 13: Algorithms for problem solving 411

The list is still not quite in the correct order. One further pass through the data will be
needed to bring cow to the top of the list. A large number of comparisons have been
necessary and the algorithm is not particularly efficient. If many items have to be sorted by

this method, the program would be slow. Better sorting methods are needed for large data
sets.

An improved sorting method, the quicksort algorithm, makes use of the technique of
recursion.

Recursion involves carrying out a version of a task within the task itself. A simple example is
to produce a geometric pattern by recursion.

We begin by drawing a square.

Four smaller squares are then drawn with their centres at each of the corners of the
larger square.

Further smaller squares can then be added at the corners of each of these small
squares, producing a pattern of any chosen depth.

w1
L= =l

ug=1
B+

Img=1
==l

[EEl
==l

Figure 439: developing a recursive geometric pattern

The quicksort algorithm begins with an unsorted set of data. One data item, often the first
in the sequence, is selected:

HOOOO0O00OOO

Figure 440: pivot selected as the first item in the unsorted list

The program then compares the reference item, known as the pivot, to each of the other

items in the data set. All items with lower values are moved in front of the pivot, whilst all
items with higher values remain after the pivot.

412 Developing Numeracy in Further Education

OCOOOOHOO0)

unsorted sub-list, but all items unsorted sub-list, but all items
have a value less than 38 have a value greater than 38

Figure 441: division of the original list into two sub-lists

We have now divided the original list into two unsorted sub-lists, separated by the pivot
item. We know that the pivot is now in its correct position, as any rearrangement which is
necessary in the sub-lists will not affect the pivot.

The sorting procedure is now repeated recursively on each of the sub-lists. New pivot
values are used to make comparisons to create further sub-lists:

HOOOOHOOO
OO0

Figure 442: further sorting of a sub-list by recursion

Recursion continues until all sub-lists have been reduced to single items. At this point, the
set of data will be fully sorted.

To demonstrate the quicksort algorithm in action, consider the series of random words for
methods of transport. These words need to be sorted into alphabetical order.

| plane | van | truck | bus | boat | taxi | ship | bike | car | train |

We will select the word 'plane' at the start of the sequence as the pivot. We then decide
whether each of the other words would come before (€) or after (=) the pivot value in
alphabetical order.

Ve

| plane | van | truck | bus | boat | taxi | ship | bike | car | train |
pivot | > > € € > > € € >

Chapter 13: Algorithms for problem solving 413

We make a new copy of the data, putting all the items before the pivot value on the left,
followed by the pivot itself, then all the items after the pivot on the right.

™\ (

| bus | boat | bike | car plane | van | truck | taxi | ship | train |
€« € € €«) pivot | > > > > >

Although the groups of data to the left and right of the pivot are not yet sorted, the pivot
itself must be in the correct position in the sequence. Any further sorting cannot alter its
position.

The process is now repeated for the groups of unsorted data to the left and right of the
pivot. The new comparison values will be 'bus' and 'van'.

N\ (

| bus | boat | bike | car | plane | van | truck | taxi | ship | train |
pivot € € > v pivot € € € €

J/

Within each unsorted group, we decide whether each word comes before or after the pivot
value.

The words in each unsorted group are again rearranged, so that words before the pivot are
listed first, then the pivot itself, then the words which come after the pivot value in
alphabetical order.

()
| boat | bike | bus | car | plane | truck | taxi | ship | train | van |
€« €« Y, inOt \ > / v _ €« €« €« €« Y, inOt

The pivot values 'bus' and 'van' are now in correct positions in the sequence. However, 'car'
must also be in a correct position as it is a single item which cannot be exchanged with any
other word.

The sort continues by creating pivot comparison values for the remaining unsorted groups.

Eboat | bike | bus | car | plane | truck | taxi | ship | train | van |

pivot €) v v v pivot € €« €)V

Rearranging the remaining data items gives:

| bike | boat | bus | car | plane | taxi | ship | train | truck | van |
€ pivot v v v o € € €) pivot v

414 Developing Numeracy in Further Education

The pivot items 'boat' and 'truck' are now in correct positions. The single item 'bike' must
also be correct. Sorting will continue with one remaining group of items.

| bike | boat | bus | car | plane | taxi | ship | train | truck | van |

_ pivot €« >) 4 4

The final rearrangement completes the sorting.

Y
| bike [boat | bus | car | plane [] ship || taxi | train |[truck van
v v v v v € pivot > v v

We can see that versions of the sorting method are taking place within itself, so the
problem can be solved by recursion.

It was stated earlier that the quicksort algorithm is a faster and more efficient sorting
method than the bubble sort algorithm. Let us consider why this is the case.

The efficiency, or order, of algorithms is often specified by means of big-O notation. This is
a way of describing the effect on the sorting time if the amount of data is increased.

Let us first examine the bubble sort algorithm. Without worrying too much about the exact
sorting mechanism, we can identify two general steps which are required to put the data
items into their correct position in a list:

e each item of data must be selected
e the item of data must be compared to each of the other data items

Each of these processes will take a certain amount of processing time, and each will depend
on the number of data items n which are present. If the number of data items is doubled,
then both processes will take twice as long. The overall effect will be to make the sorting
four times slower. We say that the order of the sorting method is:

0(n?)
which means that the overall time for the algorithm is proportional to the square of the
number of data items.

Turning now to the quicksort, we can again say that two processes are involved:

e each item of data must be selected
e the item of data must be compared to each of the other items in the sub-list

However, increasing the number of data items makes only a small change to the average
size of the sub—lists. Doubling the number of data items only adds one larger list at the top
level of the recursion, with all the sub-lists below this remaining the same size. Increasing

Chapter 13: Algorithms for problem solving 415

the amount of data by 256 times would only add eight extra levels to the recursion tree, so
there would be little change to the average length of the sub-lists which are being sorted.

It is found that the order of the quicksort algorithm is:

O(nlogn)

The sorting time will be proportional to the number of data items n multiplied by the
logarithm of this number.

We can see why a quicksort is faster than a bubble sort by plotting graphs of the two
functions n?and n log n:

N N squared
2 4
3 9
4 16
) 25
3] 36
7 49
g 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529

NinM

1.38629436
3.20583687
5.54517744
8.04718956
10.7505568

13.621371
15.6355323
19.7750212
23.0258509

26.376848
29.8188798
33.3443416
36.9468026

40.620753
44.3614196
48.1646268
52.0266916
55.9443406
59.9146455
63.9349712

68.002934

72.116367

1200

1000

g &

items sorted
g

200

bubble sort n?

guicksort nlogn

10 15 20 25 30 35
time

Figure 443: graphs of nand nlog n

Whilst the sorting time for quicksort increases in an almost linear manner as the number of
data items is increased, the sort time for the bubble sort increases as a steepening upwards
curve. For large amounts of data, there will be a major advantage in using the quicksort
method. However, with small amounts of data there is little difference in speed, and
programmers may prefer to use the bubble sort algorithm which is simpler to program.

416 Developing Numeracy in Further Education

Encryption

It is often important to encrypt computer data, for example when it is sent over a network
and might be intercepted by an unauthorised person. An important area of mathematics
focuses on the development of secure and efficient methods of data encryption, and often
involves the development of complex algorithms.

The data transmitted over a network or stored on digital media is usually a series of small
numbers representing letters of the alphabet, digits or other keyboard characters. A system
in common use is the American Standard Code for Information Interchange (ASCII) which
represents the characters on a standard English language keyboard by numbers in the range
from 0 to 255. In this system, character 'A’ has the value 65, 'B' is 66, 'C' is 67, and so on...

Cyphers work on the principle of inverse functions. We are familiar with the idea of some
mathematical operations being the reverse of others. For example, we can reverse an
addition by means of a subtraction:

65+6=71 71-6=65

An ASCII code 65 representing the letter A could be encrypted by adding 6, so that the code
transmitted is 71, representing the letter G. All other characters in the message could be
encrypted in the same way. For example, the message:

HELLO
becomes
NKRRU

If the encryption key value of 6 is known, the message can be decrypted by subtracting this
from the ASCII code values received. This method of moving letters of the alphabet forward
by a set number of places was used in Roman times, and is known as the Caesar Cypher.
However, the cypher can easily be broken by analysing the frequency of letters in the
message: the characters most frequently occurring in the encrypted message are likely to be
common letters such as E, T or A.

More complex methods of encryption have been developed, such as the Enigma Cypher
used during World War 2 which relied on machines to encrypt the code with a complex
mathematical function, then decrypt by means of the inverse function. Although much
more secure, a difficulty still existed with this system; details of the key settings had to be
transferred in advance from the sender to the receiver so that the necessary information
was available to decrypt the message. This could present a security risk if the key fell into
the wrong hands.

A major breakthrough occurred when methods were discovered for double key encryption.
In this system, one key is used to encrypt the message, then a different key is used for
decryption. Even if the encryption key is known, the decryption key cannot be calculated
and the message remains secure.

Chapter 13: Algorithms for problem solving 417

As an example, consider a customer buying goods from an on-line store, then paying by
credit card. It is important that the customer's card details are secure when transmitted
over the Internet to the store. Single key encryption would be unsuitable, as sending the
key to the customer would pose a security risk. If the key was intercepted by a criminal, this
could subsequently be used to decrypt the credit card details.

In the double key system, a pair of keys is created. One, termed the public key, is made
freely available as part of the web page of the store. The web page uses this to encrypt the
bank details when the customer sends their order. Knowledge of the public key does not
make it possible to decrypt the message. This can only be carried out using the other
member of the key pair, the private key, which is held securely in the store.

public key available
to customers

<
|

Customer Shop

v

bank details
encrypted using the
public key

public key private key

bank details decrypted
using the private key

Figure 444: use of a double key encryption system

The success of the double key method depends on finding a mathematical function whose
inverse cannot be determined from the available information in the public key. The
function and inverse chosen were rather unusual ones. Encryption is carried out using a
modulus function. To do this:

The unencrypted value, such as the ASCII code 65 for 'A’, is given the name m

The encrypted value, which will be sent securely over the Internet, is called ¢

Two numbers, called e and n, are used during the encryption process.

The value mis then encrypted to produce c using the equation:
(mé)MODn=c

The value mis raised to the power e, then the remainder found when the number n is
subtracted as many times as possible.

418 Developing Numeracy in Further Education

For example, suppose that the ASCIl code 65 is to be transmitted. Any suitable values could
be selected for the numbers e and n which will encrypt the data.

We will choose e =3 and n = 143.
Carrying out the steps of the encryption:
(653) MODn =c¢
493039 MODn =c
493039 MOD 143 =118

65 cubed is 493039. Subtracting 143 repeatedly from 493039 leaves a remainder of 118.
This is the encrypted value which will be transmitted.

message encrypted message

65 118

Figure 445: encryption using key values e and n
We now need an inverse function which can convert 118 back to the original value. This is:
(cd) MODn=m

where c is the encrypted value and m is the original message. n is the same modulus value
which was used during the encryption.

We also need another value d. For reasons which will be explained shortly, a suitable value
fordis 221.

encrypted message message

118 65

Figure 446: decryption using key valuesd and n

To operate the double key encryption system, the customer in the shop example would
need to know the encryption values e and n. These can be made publicly available.
However, the message cannot be decrypted unless the value of d is also known. This would
be held securely on the shop's computer system and not revealed to unauthorised persons.

The security of the double key encryption method depends on it being impossible, or very
difficult within a reasonable time scale, to find the value of d when only e and n are known.

Chapter 13: Algorithms for problem solving 419

To operate double key encryption, we need a way of generating a set of values e, nand d
which can be used in the public and private keys. In practice, nis chosen to be a very large
number which is produced by multiplying together two large prime numbers which we will
call p and q. For example, we might choose:

p = 1889, q = 3547

n = 1889 x 3547 = 6,700,283

Only knowing the product n makes it very difficult to find p and q. Real systems use even
larger values so the task becomes effectively impossible. For example the value produced
after multiplying two large prime numbers might be:

508.831.527.074.583.528450.102,307.296,219.126,353.615,966.568.767.279,141.636.540.274,797,479.338,868,467 577.077,040.185.880.809.96 1.491,697.372.739.274.506.369,327 66 1,1 1 1. 796.594.24).231.995.751 065.658
221,122,093 945.938.153,794.315,420,548,698,380,618.543,875.275,305.915,901,137.507,781,571,030,725,956,338,741,630,099.402. 346,557 51 1.395,955.348.21 3,164,544 819,539 851,61 1.260.066.779.617.072.171 274234
461.030.564.731 463.108/952.166,635.556,977,930,448 796,791, 810.765.574.337.122. 732 B76.144.058,162,509.032,085,104,169.921,171.363.010.570.638.293,420.474,748.1 75,986 407,672 409,709,462, 572 378,469 885.24) |
136.827.781.901.553.607.615.840,J04.004,678.260 48,181 419.668.94)1 548.126.659.869.282.357.195.261.075.765.993.158.569.755.459.695.855.779.838.519.150.400.678.997.539.754.753.620.1 1 5.871.706.48).333.101.727
206.820.790.98.739.332,162.263,178.353,002.115,753.,696,044,349,878.004.970.826.506473,546,447.725,969.053,184,165,630.677.82).33 | 554,851 520.484.365.561,312.156.265.512,027.972.704,000,165.27).017 881,629,
322.645,084.015,737,503,938,308,637,219,196,946,991,281,480.219,697,353,770.968,409,150,636,207,505,459,687,872.610,706.55 1 662.688,369.435,010.005.223.929.553,909.654.961,694.936,984.811,150,964,851,928.733 |
272.346.913.571.263,461,250.259,073.551,243,041,600,045,885,995,321.614,373.242.297,134,589,056,074,595,082,131,009,422.067 878.401 .61 1. 809.257.511,079.036.556.391,474.216,913.825.6%1 85 1,756,406,458.900.952
452.191.614.942.226.229,267,834,529.562,766.859,797,289,560,557,008.167.906.697,56 1 658, 204,923,257,957.542.893.608,902.31 6, 867.574,460.647.152.207, 1 43.506,972.169,723.597,269,684,792.602,430,424,41 2801, 728
054.604,178.406,888.368,139,963,804.07,106,768,907,08 6 72.310.454.454.792.008.628.193.507.710,028,083.1 19,995,325,741.245,910.841 554.066,632.003,426.067.996.817.873,407,896.266,077.61 1.609,051.779.846.33 |
132.310.665.941.838.672,142.692.187.046.969.680.276.296.369.719.330.271.890.336.299.545,000 804,876.159.718.718,851,140.778.101.381.071.526.544.481 501,722, 189.148.758.458,147.824.387.159.572.079.408.550.505
238.274.924.716,672.375,040,002,549,345,242.236,043,433,337,695,641 698.274.563,649,942.512,418,048,458,391,050,1 1| 851,547, 399.464, 315,386,792 446,609,740,527,942,408,022,732.291,158,534,380,782,984.874,903 |
734,594,682 640,370,253,644,738,450,174,1 14,868,044,841,363,039,584,963,346,431,569,117,223,213,992.891,032,375,459,679.726,017.306,361.948. 847,311 256 864,664 ,829,562.411,242.829,254,966,415,059,452.814.265
916.970.971.731.405.242,072.634,750.674 864.616,907,854,721.210.258.479.399,106.627,070.453.983.965,184.629,1 15,543,771 566,649.119.197.756.815.739.961.943,358.317,191.641,930.81 | 985,869.594,980.508.532 594
770.602.811.598.592.010,937.241,400.263,041,502.271,041,567.641,785.394,554,558.934,958,600,81 191,583,044, 870,056 81 6.646,027.246.480.517, 336,467, 1 56,116.550,764,185.309,202.07 1, 460.225,584,92 1,971 205724
$37.125.322.790.732.148,619.292.621.976.178,918.680.226.456,668.43 1 065,41 7.1 74,4021 71,21 1.501,699.004.71 1.1 16,408,215.922.397.481,599.672.354.628.434.616.963.278.097.508.394.025.309.795.615.170.552.706.51 | |
335.157,038.435,346.663,736.213,251.21 1,361,377 897.308,179.215,608.218.,695.702.681,920,839,329.792.878,228,433, 968,077,114 318.278,108.61 5.652.093.531.528,483,542.465,164.91 4,231,061 515,474,340,685.234.123
632.381,277.667, 225,833,221 872, 126,765,248 482,617,757 441,670.865.213, 415,622 587,593,762, 807.478,551,924,008,747,151,937,886.329,771,908,41 3,782,008 £07,417.567,275, 145,732, 775,151 492,555,889,204. 304 810.
037,160,023 568,879,388 647,754,364.578,201,087 523,198,146, 728.324.917.724,707,627 135,81 4.044.944,509,225, 580 348,61 1 £77.539.057,072.724.455.505,877,156.848.165,927,030,952.494,705,055,413 44,621 866,484
$61.599.451.391.597.367.639.683.177.318.218,902.407.445.731,998.244.719.685.351.179.555.647.585.21 1 450.992.058.771.711.146.478.879.188.81 1.291.954.002.015.248.010.507.648.043.356.978.641.011.507.984.4 1 4.696,
868.346.901.806.615.025.923.026,574.584 086,649.31,668,657,071.384.157.937.052.336, 638,62 1,185,925.655,174,227,548,342.944,705.332.502.578.208.06 2.958,15.570,1 56.698.001.520,427.680.524.985,360.686.955. 161
173.267,066.523,093.126,225.682,137.927,544,930,870,750,569.687.308.066.517.558.202.093.254.96 1 864,948,629, 386,881,726,474.663,407,045.101.710.560,498.685,046.658,939.249,526.689.853.221,183,354.403.653.19
170.915.208.560.649.167,848.695,133.852,263.797,814.344,951.098.273.351,068.894.433,130,126,650,222.421,368,818,855,621,456.656,.390.561,845.764.254.708.465.56 2.369.840.220,402.169.722.197.810.178.223.218.3 18
214.143,106.762 419,824,479, 542 BB4,572, 506,704, 473,707,346,302.412.185,369,846.340,448,23 1,182 841,334,733 502,145,252, 648.372.570.216.534,948.747.1 1 6, 988,051,859, 537 982,8846,022.714.61 1 B10,491.823.310.249,
245.321.558.003.709.734,613.513,935.693 443.262,381.525,289.616,054.454.502.761,397.654.630,200,303,186,350,576.861,535.587,404.21 1 485.045.595.793.533.650.726.1 10.470,607.721.865.59 | 967.814.970.049.649.092
553.411.951.820,673.583,005.585,070.536,762.903,097.537 859.841,659.561,916.947,578,705,904,858,781,402,309,204.543,094.791 069.448,681,252.680.560,486.158,051.601,145,687,320,481,373.811,137.378.94| 642823
710.763,179.577.067.529 878,071 284,740 815.934,715.499,1 31,059,762 858,467 879,340,629,735,457,005,678,508,090,770,674.644,191,495,915.246,475.47 1 440,300, 18.,509,153,379,359,242,362.827.810,750,626,082.095,
349.847.870.745,030,749,301,029,570.297 553.870,594.726 635.227,085.467,602.565,878,083 £89,105,656,605,329,440,334,124.345,385,1 24,41 6.963,668.464,304.971 965,198, 149,801,335,129,008,502.356,6 35,523 863,493
658.251,934.079.933.824,322.690,962.591,371,786,998,564 815,839,127,353,147.971,735 467,071 505,777 B55,868,246,336,800,060,3%9,102.768.528.066.286.092.157.524,569,1 15,23 1,568,564.381,056.950.317.023 486,997,
515.891.968.875.251,059,534.238,181,735,302.206,348.793 407.514,322.723,955.082.496, 488,170,273, 175,999 601,375 484,407.774,409.802.351,059.463.407.781.497,982.813,061,531.81 2.970.810.929.274.912.202.1 1 1 674,
316.293,029.967,329.068,961,306,345,906,022.664.579,61 2.785,311,159.652.676.988.504,553,503,440,457,105.930,869,166,477,535,457,928.862.196.564.339,446.1 1 1,769,91 2.758.223,093,529,667.541.81 1.785,024,352.89,
961.250,367.457.410.491 509,338,086,308,649,129.224,445,581,01 1,1 32.385.215.278.51 1,366,941,430,568,765.008,167,098,581.185,968,103,707.597.890.727 885,87 | 453.815.744.660.237,267,327,097,915.89.019 806,533
818,129.327,914.792.498 822.324,975,153,591,462.237,090,828,287,009.240,557.237,363,791 683,668, 363,964 877,574 904,061.387,995,975,732.537, 357,096, 369,91 1 842.519,638.399,261,035,320,244,345,856,130,779.838
619.905,065,727,180,880,496,676, 363,783 392,948,718,971 884,591,933 484,745,309, 364 076,754,1 15,721 484,849 982,428 606,824,714,075,759,458.966,240.213,659,793 85 1,995,585,207, 491,385,481 255,797,273.222.137,
639.144.361,762.475.341 638,568,451 693, 419,569.374,090,169,186.701.984.641,881,768,293.276,404,095,379,227,279.226,030.277,174.319,142.041 219,77 1 046,905.768,307,970.708,796.591,995,048,186,961,290.229.705,
641.395.262.706,962.019,631 B87 474,732,595 346 612 B85 632.817,885.205,132.817.762.727.923.952. 824,444 898,308 589,21 1.953,969,053,639.654.21 1,123 576.296,737.4113.177.501,254.840.737.797 52| 848,209.793.360,
‘nso’lil?ﬁ‘mb’sls;.”l.mm35;.70I.ﬁl?.ﬂl.ow.‘:“.&ﬂ.nt{ﬁ.ﬂl !.HT.?G’.N?J n.m”;.ﬂi 1.716,024,421 59486631 0.!04,:27.764.573.“5.115.9?0.3“.019.98l.?‘%mﬁ:&mﬁmﬁ].limun
882 B4 & 38N JLASE] 2 £1.6900 i 56 4) 446 044 8 £ a4 41 18 9 £ £91 4614803 4

Figure 447: example of a secure large encryption value produced by multiplying prime numbers (Vance, 2014)

It would take a long time to find the two prime numbers which multiply to give this result!
The significance is that the decryption value d can only be found if we know the two prime
numbers p and q which were used to calculate n.

The method used to find d from p and q is the Extended Euclidean Algorithm. The
procedure is quite complex, but can be illustrated by working through an example:

e We begin by choosing two very large prime numbers p and q. To keep things simple
in this example, we will set:
p=5 q=11

e We now calculate a value ¢ known as the Euler totient function. This is done by
subtracting 1 from each of p and g, then multiplying the result:

o=0G-1(11-1) =40

420 Developing Numeracy in Further Education

We now choose a value for the encryption key e. It is important that this does not
share a common factor with ¢. A value of 7 would be suitable for e, since 7 does not
divide into 40.
The other encryption value n is the product of p and qg:

n=5x11=55

It now just remains to find the decryption key d using the Extended Euclidean Algorithm.
Although none of the steps of the algorithm involves difficult mathematics, the sequence
can be difficult to remember. In practice, the key values would be generated by a computer
program which has been set up to carry out the correct sequence of steps.

We begin by writing the value of ¢ at the top of two columns. Beneath this in the first
column is the value of e, and in the second column is written 1:

40
7

40
1

We now divide ¢ by e, writing just the whole number result and ignoring any remainder.

40 40
7 1
5

We multiply this result by each of the second row values:

40 40
7 1
5*7=35 5*1=5

These totals are then subtracted from the values on the top row:

40 40
7 1
(40-35)=5 (40-5)=35

These results now form the third row of the table:

40 40

7 1

5 35
The first row of the table can now be discarded:

7 1

5 35

Chapter 13: Algorithms for problem solving 421

The steps carried out above are now repeated:

We divide the left column value of the first row by the left column value of the second row,
writing the whole number result and ignoring any remainder.

7 1
5 35
1

We multiply this result by each of the second row values:

7 1
5 35
1*5=5 1*35=35

These totals are then subtracted from the values on the top row:

7 1
5 35
(7-5)=2 (1-35) = -34

Only positive results can be accepted. The negative value of -34 is converted to a positive
value by adding «:

34+40=6

These results now form the third row of the table:

7 1
5 35
2 6

The first row of the table can again be discarded:

5 35
2 6

We need to carry out the sequence of steps once more:

We divide the left column value of the first row by the left column value of the second row,
writing the whole number result and ignoring any remainder.

5

35

2

6

2

422 Developing Numeracy in Further Education

We multiply this result by each of the second row values:

5 35
2 6
2*%2=4 2*6=12

These totals are then subtracted from the values on the top row:

5 35
2 6
(5-4)=1 (35-12) =23
These results now form the third row of the table:
7 1
5 35
1 23

The left hand column of the final row now contains a value of 1, which means that a solution
has been found. The required value for the decryption code d is the corresponding value in
the right hand column. We therefore have:

d=23

All the values required to operate the double key encryption system are now available for
use:
n=55 e=7,andd =23

n and e together form the public key, whilst n and d together form the private key.

Game strategy

Algorithms are important in planning strategies for success in games. Apart from a role in
games developed for recreation, algorithms can be important in modelling complex real
world scenarios such as economic crises or military conflicts. For many of these applications,
pattern recognition and the estimation of probabilities are important.

Noughts and crosses

We begin with the simple and familiar game of Noughts and Crosses. This is played on a grid
of three rows of three squares. Two players, designated as nought 'O' or cross 'X', take
turns to add their symbols to the board. The objective is to achieve a line of three noughts
or crosses, either horizontally, vertically or diagonally.

Chapter 13: Algorithms for problem solving 423

As an interesting challenge, computing students can produce a version of the game where
one player competes against the computer. To achieve this, the computer must be
programmed with a game strategy.

o5 Form1 - O X

John
playing as X

col=0
row =1

000
100
000

Checking for a win by X:

Now i is the computer’s tum, playing as O:
Checking fortwo in a line...

Checking for another move for the computer:
position = 4

X0.

another game exit

Figure 448: noughts and crosses game, including comments to explain the computer strategy
The player is designated as X, and the computer as O.

After each move by the player, the computer takes over control and can make a move. It
must, however, first check whether the player has just completed a line of three Xs and has
won the game.

If the game is continuing, the computer next checks whether there is a line with two Os and
a blank space. If so, the computer can complete the final O and win the game.

If the game is still continuing, the computer must try to make a move. We can see that not
all the squares on the board are of equal importance in terms of strategy. The centre
square can become part of the largest number of winning lines:

V\ A /
Figure 449:

>é winning lines passing through
the centre square

R

v

A

424 Developing Numeracy in Further Education

player wins

Yes.

start

y

player makes a move
as X

three Xs in a line?

Yes

place O to complete the line

third square free?

No

two Os in a line?

computer wins

game is drawn

stop

fwo Xs in a row?

Yes.

is the centre free?

place O to stop three Xs

No

are any corners free?

)

place O in the centre square

No

are any edges free?

)

randomly select a free carner

place O in the corner square

!

randomly select a free edge

Yy

place O in the edge square

all squares filled?

Figure 450: flowchart for the noughts and crosses computer game

Chapter 13: Algorithms for problem solving 425

There is an advantage to the computer to select the centre square if this is still available.

If the centre square is already occupied, then the next best strategy is to select a corner
square if available.

C - Figure 451:

winning lines passing through a
corner square

M

If more than one corner square is empty, the computer chooses the corner randomly. This
introduces an element of chance and allows the player some opportunity to beat the
computer.

If all corner squares are already filled, then the final option is to select an edge square if
available.

A

)
v

Figure 452:

winning lines passing through
an edge square

If more than one edge square is empty, the computer again chooses randomly.

Once the computer has made its move, control returns to the player. However, if there are
no squares still free on the board then the game will have ended in a draw.

Solitaire

Our next example is the game of solitaire. This is played on a board containing a cross-
shaped pattern of holes into which pegs can be inserted. At the start of the game, all the
holes, with the exception of the central hole, contain pegs (figure 453).

Solitaire is played by a single player. The objective is to remove all but one of the pegs from
the board, leaving the last peg in the central hole. A peg can be removed by another peg
jumping over it to reach an empty hole. Moves can take place horizontally or vertically, but
not diagonally.

In this section, we give an algorithm for completing the solitaire puzzle. Computing students
can be set the challenge of producing an automated solution sequence. An animation can
be created using graphics drawn by the program.

426 Developing Numeracy in Further Education

Figure 453:

Solitaire board at the start of
the game

o9
o9
o990
99900
o9
o9

To write the game algorithm, a system will be required for specifying the moves. We begin
by creating a coordinate system for the holes. The board is divided into five areas called:
North, South, East, West and Centre, as shown in figure 454. Within each of these areas,
individual hole positions are identified by a horizontal coordinate, followed by a vertical
coordinate.

[any

Centre

West

. East

o9

D ee® .
®099 99

o9

PO Oeee-

=2
O N| O
=
(=
>

W23

South

Figure 454: coordinate system for the Solitaire board

Chapter 13: Algorithms for problem solving 427

The first objective is to clear most of the pegs from the East section of the board. This is
achieved in a series of moves:

o000

200
29000000
00060 E12 - C22
2000000

o000

200

L L JE

o0 ¢
eleee diele N32 - €32
1000 0Oe
20000000

2900

2900

900

®eo
0000 eco
eeeee e E21-C31
0000006

900

90 e

Figure 455: sequence of moves to clear the East section of the board

428 Developing Numeracy in Further Education

oeje

ee0
. O E23 -E21
eeeeeo
eeceee’

eee

oo

Q00

ee[0
. . . O © . C21-E11
eeeee o
eeeeeeC

000

00

oee

®e 0
OO CES
.....OO E21-C31
00000E

oee

oee

Figure 455(cont.):

sequence of moves to clear the East section of the board

Chapter 13: Algorithms for problem solving 429

This completes the clearance of the East area of the board. The North area can now be
cleared in a similar way, using the sequence of moves listed in figure 456.

W21-C21
N11-C11 . O O O
N31-N11

e OO
C12-N12
N11-C11 . . . O

®®®O0®o o
® O ®®®e o
®®®®® o0

Figure 456: sequence of moves to clear the North section of the board

The West area can be cleared in a similar way, using the sequence of moves in figure 457.

Ol010
$11-C12 oll lile
wis.c1 oloje/e/e@[o]o
A O JL JL JL Jie) e,
c23-W23
Wiscla eliel Jiell Ji{ Jie)
O|l®®
®0ee

Figure 457: sequence of moves to clear the West section of the board

We finally clear the South section of the board, leaving an arrow-shaped pattern in the
centre of the board, as shown in figure 458 below.

430 Developing Numeracy in Further Education

01010
ve a0
$12-532 OlO|®|® ® OO
C32-531 Ol ®® OI0I0
$32-C33 ololele .”O O
O|® O
0100

Figure 458: sequence of moves to clear the South section of the board

It is now possible to move one peg around the board in a series of jumps, removing pegs as
it goes and leaving a simple T-shape.

C12-N12 OlOJO

N12-N32 OJo|[0O

N32-C32 elleliell liellelle

C32-531 Olelelelololo

olojoje]o]o]o
O OO
OO0

Figure 459: sequence of moves to create the final T-configuration

Chapter 13: Algorithms for problem solving 431

The game can be completed with the final sequence of moves shown in figure 460.

O|O|O
O|O|O
w2222 o] [e] [e] le] [e] [e] [®
OlO|O|®|O]|O|O
o] [e] [e] le] [e] [e] [®
O|O|O
O|O|O
Summary

Algorithms have several features in common:

e During each cycle of the algorithm, a check may be carried out (e.g. whether words
are in the correct order, or whether a town can be reached by a shorter distance),
then some change may be made to the data (e.g. word order is changed, or a
distance total is updated).

e The algorithm steps may be repeated a number of times until some objective has
been achieved (e.g. a set of words are now in correct alphabetical order, or the
shortest distance for a journey has been found).

An algorithm can provide a sequence of instructions to guide a person through a complex
task (e.g. solving the solitaire puzzle) or provide a sequence of commands for a computer
program to carry out the task (e.g. generating sets of keys for double key encryption).

Design of efficient algorithms can require high levels of numeracy skills in problem solving,
pattern recognition, and perhaps knowledge of techniques in application of number,
geometry or algebra. Algorithms are often implemented by computer programs, so an
understanding of information technology systems may also be important.

