Chapter 6: Delivery planning

Delivery planning

Scenario

6

A wholesale company distributes outdoor activity equipment to sports shops. Goods are supplied by van to
customers throughout Wales from a distribution depot in Newtown in mid-Wales. An on-line software
system is required to record orders, then to plan the most efficient routes for deliveries.

Staff

Add product

Add customer

Enter order

b

.
<<include>>
. - - g
Plan delivery
-
.

Delivery planning

Add product
details

. .
<<include>>

-
-

N
<<include>>

Add picture

_____ <<include>>. - - - P Indicatg map
location

Select customer

) -
<<include>>
-

-

Specify

quantities

AN

<<include>>
~

,
<<include>>

P
Select products ’

Display orders

~

~
<<include>>

Select orders for
delivery

.
.
<<include>>

-

Improve
routes shown
between
customers

-

,
’

Determine
shortest delivery
route

’
<<extend>>

4
7

= <<include>>
' Display route

map

’
<<extend>>
'

1

Display table
of delivery
addresses

Calculate and

- =<<include>>- display mileage

271

Web-based programming projects

All users of the system will be staff of the wholesale company. For the purpose of this example project, it is
assumed that orders from sports shops will be received by e-mail or phone and will be entered into the
computer system by the office staff. Direct on-line ordering has not been included in the project, but this
function is left as an additional programming exercise if required.

Facilities will be required for entering the details of products in stock, including photographs. The trade
customers must be registered and their delivery locations recorded. Orders will then be entered.

The procedure for planning a delivery journey begins by displaying a list of orders awaiting delivery. Staff
can select the orders from this list which will be included in the delivery journey, perhaps taking into
account the availability of stock or the capacity of the delivery van. The computer will then determine the
shortest circular route to visit each of the customers and return to the depot. A delivery schedule will be
displayed and the mileages between delivery points calculated.

It is appreciated that routes between customers will not be straight lines, but may follow the geography of
valleys or the coastline. Facilities should be available for creating realistic routes.

Design

The system will be designed around a series of linked database tables:

Trade customers are registered and their business name and address are entered in the customer table. In
addition, the (x,y) map coordinates of the delivery address are recorded.

Orders received are noted in the order table. Each order is allocated a unique orderID, and is linked by
customerlD to the corresponding customer record.

deliveryCustomer

——

customeriD
companyName
address

town

mapX

mapY

outdoorEquipmentOrder equipmentOrderitem outdoorEquipment
orderlD orderltemID product/D
}<] customerlD 4’_|_’< orderID stockcode
orderDate stockcode }O—I_’_ title
delivered quantity category
deliveryDate description
picture
price
display
roadPaint staff
roadPointID stafflD
fromCustomer staffUsername
toCustomer staffPassword
Xpos
ypos
pointer

backpointer

Programming techniques

The project uses PHP with objects to handle data from the database tables. JavaScript with the p5.js high
level language extension is used for the map applications, locating customers, displaying and editing the
delivery route. The overall structure of the project is illustrated by the flowchart below.

272

Chapter 6: Delivery planning

Delivery planning

l

Enter order Add stock item Add customer Plan delivery

!

A
Display stock
descriptions, images, ™| Select customer orders for
prices v ’ the delivery journey
¢ Locate customer
on a map of the |

Select customer region

Detrmine the shortest
delivery route, starting and
finishing at the depot.

outdoorEquipment

A

/ Select item quantities /

Y

Y 3
Display a map of
Save order ———————— i f
outdoorEquipment _ h .
dup > deliveryCustomer the delivery route Road points
) l
Add road points
to improve journey \
accuracy? Yes Update road
] P

points

No

{

Display table of delivery addresses
and mileage

The website will be designed as a series of pages, each with a specific function:

e Staff log-in by entering a user name and password, which will be verified against records in the
database staff table.

e A page allows information for each product to be entered, which is then stored in the
outdoorEquipment table. The product record will include the file name for a photograph image,
which will be stored separately in an uploads folder on the server.

e Customer records can be added to the deliveryCustomer table. In addition to entering customer
contact information, the input page will provide a road map of the delivery region on which the
customer's location can be pin-pointed. This will be stored as X-Y map coordinates for use in
determining the delivery route.

273

Web-based programming projects

e A web page allows orders to be entered. The customer is first selected. Products can then be
chosen from a list, with the required quantities specified. An option allows the full description of a
product to be displayed, along with its photograph. Overall order details will be stored in the
outdoorEquipmentOrder table, linked to a set of individual product orders in the
equipmentOrderltem table.

e When planning a delivery, a list of outstanding orders is first displayed. The orders to be included
in the delivery are then selected.

e The program uses the nearest neighbour algorithm to determine a minimum journey distance
starting at the depot and travelling around the series of delivery points. The algorithm is repeated
using each delivery point in turn as the starting point of the circuit. A shorter total distance may be
found. The best result is chosen as the journey route and displayed on a map of the region.

e Interactive graphics allow the user to add points along the road connection between delivery
points, to allow the link to more accurately follow the route and reflect the true distance travelled.
The sequence of road points between locations is stored in the roadPoints table in the form of
linked lists.

e Atable lists the sequence of delivery addresses, along with the calculated mileages for the stages of
the delivery route.

Method

Begin by setting up a new folder on your local computer and on the server with the name 'delivery'.

All users will be staff of the company, so a password login is required. Log-in to the PHP MyAdmin web site
for your database account and display the list of tables in the database. Select the New option from the list
of tables. Set up a database table for staff usernames and passwords. Create three fields: stafflD as
integer, staffUsername and staffPassword both of type varchar with a length of 20 characters. Name the
table as 'staff' and save the table design.

[E Browse 24 Structure | L] SQL 4 Search | ¥t Insert | = Export | [& Import | =5 Privileges

(]

A4 Table structure 82 Relation view

Mame Type Collation Attributes Null Default Comments Extra Action
< 1 stafflD 0> int(11) No MNone o~ Change & Drop

in1_swedish_ci Mo MNone &~ Change @ Drop
Mo None &7 Change @ Drop

staffUsername wvarchar

a2

staffPassword wvarchar(20) latin1_swedish i

t = Check all With selected: = Browse 47 Change & Drop [@ Uniqgue {5 Index [§

~~ Primary

Set the staffID field to be the primary key. Click the Change option on the staffID line, then tick the auto
increment (A_l) box. Further information about setting up the staff table will be found in the Hardware
Store project in Chapter 2.

Use the Insert option to add several members of staff as test data.

Create a header image for the homepage with a size of approximately 1000 pixels by 240 pixels. This
should include the company name 'Outdoor Equipment Wholesale'.

274

Chapter 6: Delivery planning

Save the graphics file as title.jpg and copy it to the delivery folder on the server.

Open a blank file. Create the log-in page by entering the program code below.

<?
session_start();
$_SESSION['login']="NO";
?>
<html>
<head>
<title>Delivery planning</title>
<style>
body{
font-family: arial, sans-serif;
}
</style>
</head>
<body>
<form action="enterOrder.php" method="post">

<table border="0" cellpadding="10">
<tr>
<td><h3>Staff Log-in</h3></td></tr>
<tr>
<td>User name</td>
<td>
<?
echo "<input type=text size=20 name=user >";
?>
</td></tr>
<tr>
<td>Password</td>
<td>
<?
echo "<input type=password size=20 name=pass >";
?>
</td></tr>
<tr>
<td></td>
<td>
<input type=submit value="Enter">
</td></tr>
</table>
</form>
</body>
</html>

Save the file as index.php and copy it to the server. Run the website and check that the log-in page
appears correctly. Password entry should be shown as symbols.

275

Web-based programming projects

Staff Log-in
User name |Jones1 |
Passwiord | |

We will now create a Staff class. Open a blank file and add the lines of program code below.

<?
class Staff
{
private $user;
private $pass;
function __construct($userSet,$passSet)

{

$userSet;
$passSet;

$this->user
$this->pass

}

private function checkUser($userWanted,$passiWanted)

if (($userWanted==$this->user)&&($passWanted==$this->pass))
return true;

else
return false;

}

public static function checkPassword($userWanted,$passiWanted)
{

include ('user.inc');

$conn = new mysqli(localhost, $username, $password, $database);

if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

$query="SELECT * FROM staff";

$result=mysqli_query($conn, $query);

$num=mysqli_num_rows($result);

mysqli_close($conn);

$i=1;

while ($i <= $num)

{
$row=mysqli_fetch_assoc($result);
$user=$row["staffUsername"];
$pass=$row["staffPassword"];
$staff[$i] = new Staff($user,$pass);
$i++;

}

$found=false;

for ($i=1;%i<=$num;$i++)

{
$answer= $staff[$i]->checkUser($userWanted, $passanted);
if ($answer==true)

{
}

$found=true;

}

return $found;

276

Chapter 6: Delivery planning

Save the file as Staff.php and copy it to the server. The program code defines username and password
attributes for a staff object, and provide a constructor method. We then add methods to check the log-in
details. The checkPassword() method will will loop through all of the staff objects, applying the
checkUser() method to each. If any of the individual objects returns a true result for a correct log-in, the
checkPassword() method will return a true result overall.

All pages within the staff section of the web site will display the same menu options along the top of the
page. We can save repetition by creating a separate file for the menu program code, which can be included
in each staff page.

Enter order Plan dalivery ‘Add customer ‘Add stock item

Open a blank file. Add the program code shown below, then save this as staffMenu.php. Copy the file to
the server.

<table class=menu>

<tr><th class=menu>

Enter order</th>

<th class=menu>

Plan delivery</th>

<th class=menu>

Add customer</th>

<th class=menu>

Add stock item</th></tr>

</table>

Open a blank text file and set up a style sheet with the lines of code shown in the box below.

body {
font-family: arial, sans-serif;
}
table.menu {
border-collapse: collapse;
width: 100%;
}
th.menu {
text-align: left; padding: 8px;
background-color: rgb(@, 153, 216);
color: white;

a:link, a:visited {
color: white;
text-decoration: none;
}
#entryForm {
width: 900px;
margin: 20px; padding: 20px;
border: 1px solid #000000;

Save the file as styleSheet.css and copy it to the server. We now have all the components necessary to
create the first page within the web site. Open a blank file and add the lines of program code below.

277

Web-based programming projects

<?

?>
<ht
<he

</h
<bo
<

{

}

?
</b
</h

session_start();
$user=$_REQUEST['user'];
$pass=$_REQUEST['pass'];
$login=$_SESSION['login'];

ml>
ad>

<title> Delivery route </title>

<link rel="Stylesheet" type="text/css" href="styleSheet.css" />

ead>
dy>
?

if (!($_SESSION['login']=='YES'))

include('Staff.php');
if (Staff::checkPassword($user,$pass)==false)

header('Location: index.php');

else

$_SESSION['login']="'YES';

>
ody>
tml>

include('staffMenu.php');

Save the file as enterOrder.php and copy it to the server. Before running the staff log-in system, a security

file will be needed to authorise access to the on-line database. This has the format:

<?

$username="YOUR USER NAME";
$password="YOUR PASSWORD";
$database="YOUR DATABASE NAME";

?>

Create a blank text file and copy the lines above. Replace "YOUR USER NAME" and "YOUR PASSWORD" with
the username and password which give you access to the PHP MyAdmin website. The entry for "YOUR
DATABASE NAME" is normally the same as the username entered on the first line. Save the small file as
user.inc and copy it to the server.

Run the website. Enter a correct staff username and password. The page containing the staff menu should
be displayed. Test the log-in system by entering incorrect details. The user should be returned directly to

the log-in p

age.

The series of menu options are displayed at the top of the page. We will begin by developing the option to
enter products. The product data will be stored in the database. Go to the PHP MyAdmin website and list
the tables in the database. Select the 'new' option and create a table with the name outdoorEquipment.
Add the fields as shown below. The productlD field is of integer data type, and should be set to auto-
increment as records are added.

#
1

=] @ ;B W M

278

Mame

Type

productlD 25 int{11)

stockcode
title
category
description
picture

price

varchar(20)
varchar(50)
varchar(50)
varchar(500)
varchar(50)
double

Collation

latin1_swedish_ci
latin1_swedish_ci
latin1_swedish_ci
latin1_swedish_ci

latin1_swedish_ci

Attributes MNull Default Comments Extra

Mo
Mo
Mo
Mo
Mo
Mo
Mo

Naone
Naone
None
None
None
Naone

MNone

AUTO_INCREMENT

Chapter 6: Delivery planning

We will now set up a web page to enter product details. Open a new file and add the lines of program code
below. Save the file as addStockltem.php and copy it to the server.

<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />

</head>
<body>
<?
include('staffMenu.php');
?>
<div id="entryForm">
<form action="upload.php" name="itemEntryForm" method="post" E:il
enctype="multipart/form-data">

<table bgcolor='white' border='0' cellpadding='10">

<tr><td><h3>Add stock item</h3></td></tr>

<tr><td><table bgcolor="white' border='0' cellpadding='10"'></td></tr>
<tr><td>Stock code</td>

<?
echo"<td><input type='text' name='txtStockcode' id='stockcode' E:il
width="300px"' value='".$txtStockcode."'></td>";
?></tr>
<tr><td>Product title</td>
<?

echo"<td><input type='text' name='txtTitle' id='title' width='30@px"' E:il
value="".$txtTitle." " '></td>";

?></tr>
</table>
</td></tr></table>

</form>

</div>

</body>

</html>

Run the website. Log-in as a member of staff, then select the '"Add stock item' menu option. Check that
input boxes have been created for the stock code and product title.

Enter order Plan delivery Add customer

Add stock item

Stock code | |

Product title | |

Return to the addStockltem.php file and add the lines of program code on the next page.

Save the addStockltem.php file, copy it to the server and refresh the 'Add stock item' web page. A drop-
down list of outdoor equipment categories should appear, as in the illustration below.

Category Clothing, boots, rucksacks »
Clothing, boots, rucksacks

Tents and camping
Mountain bilkes
Water sporis
Climhing equipment

279

Web-based programming projects

<td>Product title</td>
<?
echo"<td><input type='text' name='txtTitle' id='title' width="'300px"
value="".$txtTitle." " '></td>";

?></tr>
o <tr> N\

<td>Category</td>

<td>

<select name="lstCategory" id="category">

<?
$cat[1]="clothing'; $text[1]="'Clothing, boots, rucksacks';
$cat[2]="camping"’; $text[2]="Tents and camping’;
$cat[3]="bikes"; $text[3]="Mountain bikes';
$cat[4]="watersports'; $text[4]="Water sports’;
$cat[5]="climbing"; $text[5]="Climbing equipment"';

for ($i=1; $i<=5; $i++)

if ($1lstCategory==$cat[$i])
echo"<option value="".$cat[$i].""' selected>".$text[$i];

else
echo"<option value="".$cat[$i].""'>".$text[$i];

echo"</option>";

}
?>
\\7 </select></td></tr>

</table>
</td></tr></table>

Return to the addStockltem.php file and add the lines of program code below.

?>
</select></td></tr>

(" <tr>
<td>Description</td>
<?

echo"<td>";

id="description'>$txtDescription</textarea>";
echo"</td>";
P></tr>
<tr>
<td>Price f£</td>
<?
echo"<td><input type='text' name='txtPrice' id='price' width="100px"
value="".number_format($txtPrice,2)."'></td>"

_ ?></tr>

echo"<textarea rows = '6' cols = '29' name = 'txtDescription' E:il
)

n

J

</table>

</td></tr></table>
</form>
</div>

</body>

280

Chapter 6: Delivery planning

Continuing to work on the addStockltem.php file, add the further block of program code:

<td>Price f£</td>
<?
echo"<td><input type='text' name='txtPrice' id='price' width="'100px"
value="".number_format($txtPrice,2).""'></td>";
P></tr>

</table>

(</td>)
<td valign="top'>
<table border="0" cellpadding="10">
<tr>
<td>Image</td>
<td><input type="file" name="fileToUpload" id="fileToUpload">
</tr>
<tr>
<td><input type="submit" value="Upload Image" name="submit"><p>
<?
echo"";
echo"<input type='hidden'value="'".$imageFile."' id='imageFile'>";
?></td>
</tr>
_ </table> Y,

</td></tr></table>
</form>
</div>
</body>

The code adds input components for the product description, price, and a photograph image.

Save the updated addStockltem.php file, then copy it to the server. Run the web site, go to the
addStockltem page and check that components are displayed correctly as shown below.

Add stock item
Stock code | | Image Choose file | Mo file chosen
Product title | |
Category =
Description
4
Price £ 0.00

The image upload will be carried out by PHP program code in another file. To create this, open a blank file
and add the program code shown on the page below. Save the file as upload.php and copy it to the server.

The program begins by collecting data from the input boxes on the AddStockltem page, then re-saves this
data as session variables for later re-use. The selected image file is copied to an uploads folder on the
server.

281

Web-based programming projects

<?
session_start();
$txtStockcode = $_REQUEST["txtStockcode"];
$txtTitle=$_REQUEST['txtTitle'];
$1stCategory=$ REQUEST['lstCategory'];
$txtDescription=$_ REQUEST['txtDescription'];
$txtPrice=$_REQUEST['txtPrice'];
$imageFile=basename($_FILES["fileToUpload"]["name"]);

$_SESSION["imageFile"]= $imageFile;
$_SESSION["txtStockcode"] = $txtStockcode;

$ SESSION["txtTitle"]= $txtTitle;
$_SESSION["lstCategory"]= $1lstCategory;
$_SESSION["txtDescription"]= $txtDescription;
$_SESSION["txtPrice"]= $txtPrice;

$target_dir = "uploads/";
$target_file = $target_dir.$imageFile;
move_uploaded file($ FILES["fileToUpload"]["tmp_name"], $target_file);
header('Location: addStockItem.php?imageUploaded=YES');
?>

Create a folder with the name 'uploads' within the 'delivery’ folder on the server.

When we arrive back at the addStockltem page, any data previously entered in the input boxes should be
redisplayed. To do this, open the addStockltem.php file and add the block of PHP code at the start as
shown below.

4 N

<?
session_start();
$imageUploaded=$_ REQUEST['imageUploaded'];
if ($imageUploaded=="YES")
{
$imageFile=$ SESSION['imageFile'];
$txtStockcode=$_ SESSION["txtStockcode"];
$txtTitle=$_SESSION["txtTitle"];
$1stCategory=$ SESSION["lstCategory"];
$txtDescription=$_SESSION["txtDescription"];
$txtPrice=$_ SESSION["txtPrice"];
}
N y
<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
</head>

Save the addStockltem.php file and copy it to the server. Run the website and select the 'Add stock item
menu option. Enter a stock code, product title, description and price for an item of outdoor equipment,
and select a suitable product category. Obtain a photograph image, save it onto your computer, then
select this image file using the 'Choose file' component. Finally, click the 'Upload image' button. Check
that the photograph and all text data are still displayed correctly after the page is reloaded.

The product record will be stored in the database by means of the OutdoorEquipment class which we will
now create.

282

Chapter 6: Delivery planning

Upload Image

Add stock item

Stock code [AB768 | Image
Product title [Tent |
Category [Tents and camping |

An ideal two person tent for

lightweight camping.
Description

P

Price £ 86.50

Choose file |MNo file chosen

Open a blank file and add the lines of program code below.

<?

class OutdoorEquipment

{
public static $product= array();
private $productID;
private $stockCode;
private $category;
private $title;
private $description;
private $picture;
private $price;

function __ construct($productID, $stockCode,

{
$this->productID = $productID;
$this->stockCode = $stockCode;
$this->category = $category;
$this->title = $title;
$this->description = $description;
$this->picture = $picture;
$this->price = $price;

}

public static function saveRecord($productID,

$category,$title, $description,
$picture, $price)

$stockCode, $category,$title,
$description, $picture, $price)

'$title’,
"$picture’, '$price') ";

{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="INSERT INTO outdoorEquipment VALUES ('', '$stockCode’,
'$category’, '$description’,
echo $query;
$result=mysqli_query($conn, $query);
mysqli_close($conn);
¥
}
?>

283

Web-based programming projects

Save the file as OutdoorEquipment.php and copy it to the server. The lines of code define the attributes
for an OutdoorEquipment object, then provide a constructor method. Finally, a
saveRecord() method is added to upload records to the outdoorEquipment database table.

Re-open the addStockitem.php file and add the lines of program code below. Save the updated file and
copy it to the server.

</form>
(" <center>)
<p>
<button type="button" onclick="button_click()">Save record</button>
</center>
<script>
function button_click()

{

stockcode = document.getElementById("stockcode").value;
title = document.getElementById("title").value;
category = document.getElementById("category").value;
description = document.getElementById("description").value;
description = description.trim();
imageFile = document.getElementById("imageFile").value;
price = document.getElementById("price").value;
destination = 'saveStockItem.php?stockcode='+ stockcode+'&title="+title
+'&category=" + category +'&description="+ description+'&price=" Ejl
+ price +'&imagefile=' + imageFile;
window.location.href= destination;
} .
_ </script>)

</div>
</body>
</html>

Open a new file and add the code below. Save the file as saveStockltem.php and copy it to the server.

<html>
<head>
<?
$stockcode=$_REQUEST["stockcode"];
$title=$ REQUEST["title"];
$category=$_REQUEST["category"];
$description=$_ REQUEST["description"];
$imagefile=$_ REQUEST['imagefile'];
$price=$_REQUEST["price"];
?>
</head>
<body>
<?
include('OutdoorEquipment.php');
OutdoorEquipment::saveRecord('', $stockcode, $category, $title,
$description, $imagefile, $price);
header('Location: enterOrder.php');
?>
</body>
</html>

284

Chapter 6: Delivery planning

This block of code begins by collecting the field values from the page URL. The saveRecord() method in the
Stockltem class is then called to transfer the record into the database. When saving is completed, the
program will return to the blank page where the staff menu is displayed.

Log-in to the web site as a member of staff. Go to the addStockltem page, insert details of a product
including a picture, and save the record. Check that the image has been uploaded to the uploads folder on
the server, and that the product record appears in the outdoorEquipment table of the database. If all is
working correctly, add a series of products to the database.

productlD stockcode fitle category description picture price
1 APS613 Alpine jacket clothing fED’ff_TBEY versalile and lightweight. Perfect .\ ¢ 0 130
2 FW6792 Lighthiking boot clothing ﬂifi.?&m extremely high quality durable o 326
3 TNTE56 Backpacking tent camping ;?S;iii{;r:;?.lﬁ backpackers and campers, tent1 jpg 65
4 CABTSE2 Sleeping bag camping Lr;spu;i;i;rlg%signed toienhanceithermal slespingBag.jpg 36.5
5 EQ6781 Climbing helmet climbing g"u"l;":gfgn'f]':tse fﬁ”ﬁ“‘ with low profile helmetjpg 36.9
6 WSE6ET Canadian canoe watersports ELEEE:?SS constiuctioniforstrengiiand canoel.jpg 488.3
7 MB6T2 Mountain bike watersports ﬁ‘lﬂlgge“r}:;’:?é" _b“‘e frama;with:atael bike1 jpg 1635
3 CNST2 Kayak watersports glnwli:ski?lj;ak offers the paddler one boat that kayak jpg 398 4
9 TR9122 ;I;-:?—perscn expedition camping SAU[Ei?EEEJtI'.;Eight but robust two-person tent tent2 jog 895

We can now work on the page which will input customer orders. Extra entries will be needed in the style
sheet file which will format the screen display.

Open the styleSheet.css file and add the entries shown below. Save the file and copy it to the server.

/ table.stock { \

border-collapse: collapse;
border: 1px solid gray;

}
tr.stock {

border: 1px solid gray;
}

td.stock, th.stock {
padding: 5px;
border: 1px solid gray;

NG /

Before setting up the page to input customer orders, we must add some extra methods to the
OutdoorEquipment class. A loadStockltems() method will access product records from the database and
create a set of objects. The attributes of these objects can then be displayed on the web page using a
series of get() methods.

Open the OutdoorEquipment.php file and add the program code shown below. Save the file and copy it to
the server.

285

Web-based programming projects

/,7 public static function loadStockItems() A\\
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM outdoorEquipment";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
$i=1;
while ($i <= $num)
{
$row=mysqli_fetch_assoc($result);
$productID=$row["productID"];
$stockCode=$row["stockcode"];
$title=$row["title"];
$category=$row["category"];
$description=$row["description"];
$image=$row["picture”];
$price=$row["price"];
$obj = new OutdoorEquipment($productID, $stockCode, $category,
$title, $description, $image, $price);
OutdoorEquipment: :$product[$i] = $obj;
$i++;
}

return $num;

}

public function getProductID(){return $this->productID;}
public function getStockCode(){return $this->stockCode;}
public function getTitle(){return $this->title;}

public function getCategory(){return $this->category;}
public function getDescription(){return $this->description;}
public function getImage(){return $this->picture;}

\\7 public function getPrice(){return $this->price;} A,/

}

?>

We can now return to work on the page where customer orders will be input. Open the file
enterOrder.php and add the lines of program code shown in the two boxes below. Save the file and copy it
to the server. The program produces a table of stock items and prices.

<?
if (!($_SESSION['login']=="YES'))
{
include('Staff.php');
if (Staff::checkPassword($user,$pass)==false)
header('Location: index.php');
else
$_SESSION['login']="YES';
}
include('staffMenu.php');
include('OutdoorEquipment.php');
$itemcount= OutdoorEquipment::loadStockItems();
?>
</body>
</html>

286

Chapter 6: Delivery planning

include('staffMenu.php');

include('OutdoorEquipment.php');
$itemcount= OutdoorEquipment::loadStockItems();

?>

/<p>
<table cellpadding=10>
<tr><td>

<table class=stock cellspacing=10px>
<col width="800">
<col width="100">
<col width="100">
<tr class=stock>
<th class=stock > Stock item</th>
<th class=stock > Wholesale price</th>
<th class=stock >Quantity required</th>
</tr>
<?
for ($i=1;%$i<=$itemcount;$i++)
{
echo"<tr class=stock><td class=stock >";
$code=0utdoorEquipment: :$product[$i]->getStockCode();
echo $code;
$stockcodes[$i]=%$code;
echo": ".OutdoorEquipment: :$product[$i]->getTitle();
echo"</td>";
$price=0OutdoorEquipment: :$product[$i]->getPrice();
echo"<td class=stock>£".number_format($price,2) ."</td>";

}
$_SESSION['stockcodes']=$stockcodes;

?>
</table>
</tr>
__ </table>

)

</body>
</html>

Run the website and check that a table of products is displayed, as in the example below

. It may be

necessary to hold down 'CTRL' whilst clicking the reload icon, to ensure the stylesheet is updated.

Enter order Plan delivery Add customer,
Stock item W“;izsea'e ?e‘;?_l'::\':z

AP5613: Alpine jacket £130.00
FWB792: Light hiking boot £32 .60
TN7856: Backpacking tent £65.00
CAG782: Sleeping bag £36.50
EQS781: Climbing helmet £36.90
WS567: Canadian cance £486.30
MB672: Mountain bike £163.50
CNB72: Kayak £398.40
TR9122: Two-person expedition tent £89.50

Return to the enterOrder.php file and add the block of program code shown below. This creates input
boxes where the quantities of each product required can be entered. The quantity can be selected from a

drop-down list of numbers from 0 to 20.

287

Web-based programming projects

echo": ".OutdoorEquipment::$product[$i]->getTitle();
echo"</td>";

$price=0utdoorEquipment: :$product[$i]->getPrice();
echo"<td class=stock>£".number_format($price,2) ."</td>";

é echo"<td size=10 align='center'>";)
echo"<select name='quantity'>";
$quantityWanted=0;

for ($3=0;%$j<=20;%$j++)

if ($j==%quantityWanted)
echo"<option selected>".$j;
else
echo"<option>".%j;
}
_ echo"</select></td>";)

}
$_SESSION['stockcodes']=$stockcodes;
?>
</table>
</tr>
</table>

Save the enterOrder.php file and copy it to the server. Run the website and check that drop-down lists are
added for each of the product records, as shown below.

Stock item W“;r'i?:'e Se‘é:_:;::g
AP5613: Alpine jacket £130.00
FWE792: Light hiking boat £32.60 =
TN7856: Backpacking tent £65.00 §
CAG782: Sleeping bag £36.50 4
EQ6781: Climbing helmet £36.90 g

The customer order page should be able to provide additional details for any of the products, including the
photograph image. We will arrange this now. Return to the enterOrder.php file and add the lines of
program code below. An array Sdisplay[] is set up with a value for each product record. A value of 0 will
indicate that only the product name should be displayed, whilst 1 will indicate that the text description and
photograph should be included.

$_SESSION['login']="YES';
}
include('staffMenu.php');
include('OutdoorEquipment.php');
$itemcount= OutdoorEquipment::loadStockItems();

4 $display=$ SESSION['display’'];)

$change=$_REQUEST['changeDisplay'];
if ($change>0)
{

if ($display[$change]==0)
$display[$change]=1;
else
$display[$change]=0;
}
_ $_SESSION['display']=$display;

?>
<p>
<table cellpadding=10>

288

Chapter 6: Delivery planning

Continue now to add the lines of program code shown below to the enterOrder.php file. These create
buttons alongside each product record to change the amount of information displayed. When a button is
clicked, the <form> command causes the page to be reloaded so that the display can be updated.

for ($i=1;%$i<=%$itemcount;$i++)

{

C

echo"<form method=post action='enterOrder.php?changeDisplay=".$i.""'>"; :)

echo"<tr class=stock><td class=stock >";
$code=0OutdoorEquipment: :$product[$i]->getStockCode();
echo $code;

$stockcodes[$i]=$code;

echo": ".OutdoorEquipment::$product[$i]->getTitle();
(" if ($display[$i]==0) N
echo"<input type=submit style='float:right' value='more..."' >";
else
{
echo"<p><table><tr><td>".OutdoorEquipment::$product[$i]->getDescription();
echo"<td>getImage()
"' width=200px>";
echo"<p><input type=submit style='float:right' value='less...' ></table>";
}
_ echo"</form>";)

echo"</td>";
$price=0OutdoorEquipment::$product[$i]->getPrice();
echo"<td class=stock>£".number_format($price,2) ."</td>";
echo"<td size=10 align='center'>";

echo"<select name='quantity'>";

Save the enterOrder.php file and copy it to the server. Run the website and go to the customer order input
page. Click any of the buttons alongside the product records. It should be possible to switch between plain
titles and full descriptions of the products.

" Wheolesale | Quantity

Stock item price required
AP5613: Alpine jacket more... || £130.00 0 v
FW6T92: Light hiking boot
. ; £32.60 0 v
IMade from extremely high quality durable materials. They will provide excellent
support and flex for the lifetime of the boot.

less...

TNT8&56: Backpacking tent more... || £65.00 0 v

A problem that you may have noticed is that the order quantities entered in the drop-down boxes are lost
when the page is reloaded to change the product display. This can be avoided by storing the quantity
required for each product using an array Squantity[]. This array can be stored as a session variable,
accessed when the page is reloaded, and the required quantities redisplayed in the input boxes. Add lines
of code to the enterOrder.php file as shown in the box below.

289

Web-based programming projects

if ($display[$change]==0)
$display[$change]=1;
else
$display[$change]=0;
¥
$_SESSION['display']=$display;

$quantity=$_SESSION['quantity'];
$changeQuantity=$ REQUEST['changeQuantity'];
if ($changeQuantity>0)

{

$quantityWanted=$_REQUEST['quantity'];
$quantity[$changeQuantity]=$quantityWanted;

}
$_SESSION['quantity']=$quantity;)

?>
<p>
<table cellpadding=10>
<tr><td>
<table class=stock cellspacing=10px>

Now make the changes shown below:

Insert a <form> command at the start of the drop-down quantity selection component.
Modify the <select> command and insert a SquantityWanted variable, replacing two existing lines:

echo'<select name="quantity'>";
SquantityWanted=0;

if ($display[$i]==0)

else

{

}

echo"</form>";
echo"</td>";

echo"<input type=submit style='float:right' value="more...' >";

echo"<p><table><tr><td>".0utdoorEquipment: :$product[$i]->getDescription();

echo"<td>getImage()
" owidth=200px>";

echo"<p><input type=submit style='float:right' value='less...' ></table>";

(:echo"<form method=post action='enterOrder.php?changeQuantity=".$i.""'>";)

$price=0OutdoorEquipment: :$product[$i]->getPrice();
echo"<td class=stock>£".number_format($price,2);
echo"<td size=10 align='center'>";

echo"<select name='quantity' onchange='this.form.submit()"'>";
$quantityWanted=$quantity[$i];

for ($3=0;%$j<=20;%$j++)

if ($j==%quantityWanted)

Insert a </form> command at the end of the drop-down quantity selection component code, as shown
below.

290

Chapter 6: Delivery planning

for ($j=0;%$j<=20;%j++)
{
if ($j==%$quantityWanted)
echo"<option selected>".$j;
else
echo"<option>".$j;

echo"</select></td>";

(echo"</form>"; J

}
$_SESSION['stockcodes']=$stockcodes;
?>
</table>
</tr>
</table>
</body>
</html>

These changes will cause the page to reload when a quantity is selected, and the quantity[] array will be
updated. Values from the array are used to set the selection box quantities displayed.

Save the enterOrder.php file and copy it to the server.

Run the website and go to the customer order input page. Check that it is possible to enter quantities of
products required, and to change the display of product details, without any data values being lost.

wrotesae | Gty
APSE13: Alpine Jacket more... || £130.00 4 v
FW6T92: Light hiking boot more... || £32.60 o -
TNT856: Backpacking tent more... || £65.00 2 v

We will now leave the customer order input page temporarily and create a page to enter customer details.
Open a blank file and add the lines of program code in the two boxes below.

<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
<script src="p5.js"></script>
<script src="p5.dom.js"></script>
</head>
<body>
<? include('staffMenu.php'); ?>
<table cellpadding=6>
<tr>
<td>

Please enter the company name and address, then use the mouse to E:il
locate the delivery address on the map:

Company name <input type=text size ='30' id='companyName'>

Address <input type=text size= '40' id='address'>

2901

Web-based programming projects

Continued...

Town <input type=text size= '20' id="town'>
</table>

<script>
function preload()
{
imgl=loadImage("map.png");
}

function setup()

{
createCanvas (1000, 400);

}

function draw()
{
image(imgl, 9, 9);
}
</script>
</body>
</html>

Save the file as addCustomer.php and copy it to the server.

The page will use the p5.js high level extension to JavaScript. Obtain the files p5.js and p5.dom.js from the

developers' website (p5js.org) and copy these to the delivery folder on the server.

To implement the project for the wholesale company distributing to customers in Wales, a road map of the

country should be obtained. This will allow the locations of customers to be recorded. The map used in
this example has a width of 1000 pixels and height of 1260 pixels. Save the map image as map.png and
copy it to the delivery folder on the server.

Run the website and select the 'Add customer' option from the menu bar. The page should open, with
input boxes for the customer name and address and a section of the map image visible.

Enter order Plan delivery Add customer

Please enter the company name and address, then use the mouse to locate the delivery address on the map:

Company name | Address | Town| |

Cros\by ._,._,.—{—'7#\
"u\ \7
Amiwch w|.|vs|w00|.
TWa

Hoylake {
\\QMJ.
Garston™ g jicorn 7

Ho""“dlgmgyi /f‘l/\'/\‘ N Neston Frofsham
TN Uinge / Pe/mmmmwr) \sT‘ASAPn/\F\Flm :
_\aa\m‘co/a/ ; \ //.
Y/~ Bathesda { Denbigh S cussna'\/\’
7 .79 MoldYr Wyddgrug’f\

\’\ /. Liancwst
S) Rurhm/Rhuthun ’\/-’;
g Betws:Y-Coed
x /‘J\ N j Wrtxham/Wrecnm
Nasareth = / 4 { Malpas
\ Blaenau ?j(euiniog >, \

. ; P ~"\\llam“wllen \/ Whitchur¢

2N : o

NS
Pora‘ﬁ'\adog 7 \ ’ \
Snowdonia 8zla \
Pwllheli Navonal Park
\ { Oswestry
foN

292

https://p5js.org/

Chapter 6: Delivery planning

The next step is to provide a vertical scroll bar for the map image window. Return to the addCustomer.php
file and add the lines of program code to the <script> block as shown below. A series of JavaScript variables
are declared, then commands are added to the draw() function.

The map() command uses scaling to convert the vertical scroll bar position (between 0 and 400) into the
position where the top of the map image should be positioned relative to the top of the display window
(between 0 and 864). For example: when the marker is at the bottom of the scroll bar, the map image will
be moved upwards by 864 pixels so that only the lowest 400 pixel strip of the map will be displayed in the
window.

Morgomary

NGt helght 1264 - hEIght

..........

The position where the map image is drawn can be adjusted by a translate() function in p5.js. Add a series
of variables at the start of the script block, and code to calculate the correct vertical scroll position for the
map image:

<script>

var scrollPosition=0;

var VvPos;

var ratio;

var scrollSelected = false;
var xpos;

var ypos;

var show=false;

function preload()

{
}

function setup()

{
}

function draw()

{

imgl=loadImage("map.png");

createCanvas (1000, 400);

ratio = 1260/400;
tv = map(scrollPosition, @, height, @, 1264-height);
translate(0, -tv);

image(imgl, 0, 9);
}
</script>
</body>

293

Web-based programming projects

The final step is to call a function which draws the scroll bar on the right hand side of the map, with the
scroll pointer position marked by a darker square.

image(imgl, @, 9);

4 scrollbar(scrollPosition); I
X=mousex;
y=mouseyY;
if (x>=960)
{
£i11(9);
rect(986,vPos,14,14);
if (mouselsPressed==true)

{
scrollPosition=y;
if (scrollPosition<®)
scrollPosition=0;
if (scrollPosition>400)
scrollPosition=400;

}
N 4
}
</script>
</body>

Insert the scrollbar() function shown below at the end of the <script> block.

function scrollbar(scrollPosition)
{
noStroke();
fill(204);
rect(986,0,14,1264);
if (scrollSelected==false)
£il1(102);
else
£il1(40);
vPos = scrollPosition * ratio;
rect(986,vPos,14,14);

\} J
</script>
</body>
</html>

Save the addCustomer.php file and copy it to the server.

Refresh the web page. A scroll bar should now appear to the right of the map. Use the mouse to drag the
scroll pointer up and down the scroll bar. The map should move as you do this, allowing the full vertical
extent of the map to be displayed.

Pwillhiesi x NitSnal Park 7 \
| : Oswestry
) 4
\ ; 7
|} ~ ‘ |
Barmouth % Deigallay (Sheawsbury
\
) B2 N | PNt)
N f e/ WelshpoollY Trallwng
S / \ |
T / ~ }
Tywyn Machynbeth . /) / ~
J \ /Montgomcry
Newtown/Y;Drenawydd
C Bishop's Castle
3 A J !
Aberystwyth __on i \
N - Llingy
\ < Ludiow
N 4 Knighton
4 N \
/ .

Chapter 6: Delivery planning

Return to the addCustomer.php file and add the lines of program code below. These allow a red circle to

be added to the map to indicate the location of the customer.

if (scrollPosition>400)
{

scrollPosition=400;

}
}

(if (x<960)
{
if (mouselIsPressed)
{
show=true;
XpOS=X;
ypos=y+tv;

}

if (show==true)

{
£i11(255,0,0);
stroke(9);
ellipse(xpos,ypos,12,12);

\ }

}

function scrollbar(scrollPosition)

{
noStroke();
fill(204);
rect(986,0,14,1264);

Save the addCustomer.php file and copy it to the server. Refresh the web page, then click the mouse on
the map area. Check that a red circle is plotted, and this remains in position if the map is scrolled.

‘\ 1/,

/

v
New Quz‘y'

Néwtown‘.{* Drenewydd

15
Barmouth Datgallay -
A
N
\
} S
Tywyn Machynlieth >\
)
/ A J
Abery@riyth o Lisiguelo

Llindrindod Wells\

7~

J 7N

e WelshpoolY Trallwng

Mbntgomery

Bishop's Castle

Knighton

Presteigne

ghtewsbury \

Lualqw

kington- iy .=

Return to the addCustomer.php file and locate the setup() function. Add lines of program code as below.

These insert a 'Continue' button below the map window.

295

Web-based programming projects

function setup()
{
createCanvas (1000, 400);
button = createButton('Continue');
button.position(400, 600);
button.mousePressed(buttonClick);
}

Go to the end of the <script> block and add a buttonClick() function. When the button is pressed, this will
collect the customer name, address and map location, then load another web page which will save a record
into the database. Save the addCustomer.php file and copy it to the server.

function buttonClick())

{
var companyName = document.getElementById("companyName").value;
var address = document.getElementById("address").value;
var town = document.getElementById("town").value;
window.location = "saveCustomer.php?xpos="+int(xpos)+
"&ypos="+int(ypos)+"&companyName="+companyName+"&address="+ Ejl
address+"&town="+town;

}

</script>
</body>
</html>

We will now create a table in the database to receive the customer record. Open the PHP MyAdmin
website, list the existing tables and select the 'new' option. Create a table with the name
'deliveryCustomer’ and add fields as shown below. The customerlID field is identified as the primary key,
and should be set to auto-increment as records are added to the table.

Mame Type Collation Attributes MNull Default Comments Extra

1 customerD 5 int{11) Mo None AUTO_INCREMENT
2 companyName varchar{40) latin1_swedish_ci No MNone

3 address varchar{30) latin1_swedish_ci Mo None

4 town varchar(30) latin1_swedish_ci No MNone

5 x int{11) Mo MNone

5y int{11) No MNone

The next step in saving the customer record is to produce a DeliveryCustomer class which will handle file
operations. Open a blank file and add the program code below. This defines the attributes for a
DeliveryCustomer object, which correspond to the fields of the deliveryCustomer table.

<?
class DeliveryCustomer
{
public static $customerObj = array();
private $customerlID;
private $companyName;
private $address;
private $town;
private $x;
private $y;

296

Chapter 6: Delivery planning

Add a constructor method and a method to save new records into the database.

-

function __construct($customerID, $companyName,$address,$town,$x,$y)
{

$this->customerID = $customerID;

$this->companyName = $companyName;

$this->address = $address;

$this->town = $town;

$this->x = $x;

$this->y = $y;

}

public static function addCustomer($companyName,$address,$town,$x,$y)
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!'$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="INSERT INTO deliveryCustomer VALUES ('','$companyName"’,
'$address', "$town’', "$x', '$y"')";
$result=mysqli_query($conn, $query);
mysqli_close($conn);
echo $query;

Save the file as DeliveryCustomer.php and copy it to the server.

We finally need to create the saveCustomer page. This will compile the customer details, then call the
method which saves the record into the database table. Open a blank file and add the lines of program
code below. Save the file as saveCustomer.php and copy it to the server.

<?

$companyName=$_REQUEST['companyName'];
$address=$ REQUEST['address'];

$town=$_REQUEST['town'];

$xpos=$_REQUEST['xpos'];

$ypos=$_REQUEST['ypos'];
$companyName=str_replace("'"," ",$companyName);
$address=str_replace("'"," ",$address);
include('DeliveryCustomer.php');
DeliveryCustomer: :addCustomer ($companyName, $address, $town, $xpos,$ypos);
header('Location: enterOrder.php');

?>

Notice that lines of program have been added to convert any apostrophe characters (') into back-tick
characters (°). This avoids any problems when the data is saved into the database table, as the database
software uses apostrophes as markers for the ends of fields.

We now have all the resources in place to create and store a customer record. Return to the enterOrder
web page. Add a company name, address and town, then locate the customer on the map as in the
example below.

297

Web-based programming projects

| Town [Betws-y-Coed \

Company name |Mountain Sport | Address [Snowdon Street
Ambweh
Holyhead/Caergybi
~__Liangefni Penmaenmawr
3 ~BANGOR
Bethesda
\
\ Liangwst
el \
Batwi) Coed
=\
Nasareth /
Blaenau Ffestiniog
Porthmados
Snowdonia
Pwilheli Natignal Park
| Continue |

Bale |
/ / \

‘LIVE.RI?OOL : ‘ W
S

Garston~ Rufcorn

Hoylake

Neston Frodsham

ST ASAPH N Flint
Denbigh > CHESTER ™
Mold/Yr Wyddgrug TN S
Ruthin/Rhuthun
4 O _—1
Wrexham/Wrecsam N
\ Malpas, ,’

“LUangolien.~_{ Whitehur

Oswestry

Click the 'Continue' button. The program should return to the enterOrder page. Go to the database, open

the deliveryCustomer table and check that a correct record has been inserted. If all is well, repeat the
procedure to add a series of customers in different towns around Wales.

We can now complete the customer selection function on the enterOrder page. Begin by re-opening the

DeliveryCustomer.php class file. Add a loadCustomers() method as shown below.

public static function loadCustomers()

{

include ('user.inc');

$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
for ($i=1;%i<=$num; $i++)
{
$row=mysqli_fetch_assoc($result);
$customerID=$row["customerID"];
$companyName=$row["companyName"];
$address=$row["address"];
$town=$row["town"];
$x=$row["x"];
$y=$row["y"];

DeliveryCustomer::$customerObj[$i] = $obj;
}

return $num;

_ !

$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM deliveryCustomer ORDER BY companyName";

$obj = new DeliveryCustomer($customerID,$companyName,
$address, $town, $x,$y);

~

}

?>

Also add a a series of get() methods as shown below, which will allow the program to obtain data values

from the customer objects.

298

Chapter 6: Delivery planning

public function getCustomerID(){return $this->customerlD;}
public function getCompanyName(){return $this->companyName;}
public function getAddress(){return $this->address;}

public function getTown(){return $this->town;}

public function getX(){return $this->x;}

public function getY(){return $this->y;}

Save the DeliveryCustomer.php file and copy it to the server. Open the enterOrder.php file and add the
block of program code shown below.

$_SESSION['quantity’']=$quantity;
?>

<p>

<table cellpadding=10>

-

<style> select {font-size: 16px;} </style>
<tr><td>
<?

include('DeliveryCustomer.php');
$count = DeliveryCustomer::loadCustomers();
$customerWanted=$_REQUEST['customerID'];
if ($customerWanted>0)
$_SESSIONJ['customerID']=$customerWanted;
$customerWanted=$_SESSION['customerID'];
echo"<form method=post action='enterOrder.php'>";
echo"<table cellpadding=2><tr><td>Customer</td>";
echo"<td><select name="'customerID' onchange='this.form.submit()'>";
echo "<option value=0>";
$address=" "’;
$town=" "';
for ($i=1;%i<=%$count;$i++)
{
$customerID=DeliveryCustomer: :$customerObj[$i]->getCustomerID();
$companyName=DeliveryCustomer::$customerObj[$i]->getCompanyName();
if($customerWanted==$customerID)

{
echo "<option selected value=".$customerID.">".$companyName;
$address=DeliveryCustomer::$customerObj[$i]->getAddress();
$town=DeliveryCustomer::$customerObj[$i]->getTown();

}

else

{
echo "<option value=".$customerID.">".$companyName;

}

echo"</select></td>";
echo"<tr><td></td><td>".$address."</td></tr>";
echo"<tr><td></td><td>".$town."</td></tr>";
echo"</table>";

echo"</form>";

\\7?>

<tr><td>

<table class=stock cellspacing=10px>

299

Web-based programming projects

This block of code begins by loading all the customer records from the database, then sets up a selection
box in which the company names will be displayed. When a company is selected, the corresponding
customerlD is stored, the page is reloaded and the companylID is retrieved. This companyID value is then
used to display the correct company name in the selection box window, and to add the address and town
of the customer in a small table underneath.

Save the enterOrder.php file and copy it to the server. Run the enterOrder page, check that customers can
be selected and the corresponding address and town is then displayed.

Enter order Plan delivery Add customer A
Customer [Swansea Leisure v
Station Road
Swansea
. Wholesale | Quantity
Stock item price required
AP5613: Alpine jacket £130.00
FWG&T92: Light hiking boot
IMade from extremely high quality durable materials. They will provide excellent £32.60
support and flex for the lifetime of the boot.

We will now prepare to save orders into the database. Two new tables will be needed. Open the PHP
MyAdmin website. Create an outdoorEquipmentOrder table and add fields as shown below. The orderID
field is identified as the primary key, and should be set to auto-increment as records are added to the table.

MName Type Collation Attributes Mull Default Comments Extra

1 orderlD > int{11) Mo MNone AUTO_INCREMENT
2 customerlD int{11) Mo MNaone

3 orderDate wvarchar{10) latin1_swedish_ci Mo MNone

4 delivered varchar{10) latin1_swedish_ci Mo MNone

5 deliveryDate wvarchar{12) latin1_swedish_ci Mo MNone

Also create an equipmentOrderltem table. The orderltemID field is identified as the primary key, and is
set to auto-increment.

Name Type Collation Attributes MNull Default Comments Extra

1 orderltemID . int(11) No None AUTO_INCREMENT
2 orderlD int(11) Mo None

3 stockcode varchar(10) latin1_swedish_ci Mo MNone

4 quantity int(11) Mo None

We will create an OutdoorEquipmentOrder class to handle the transfer of records to the database. Open a
blank file and add the program code shown below.

300

Chapter 6: Delivery planning

<?

{

private
private
private
private
private

{

}

{

class OutdoorEquipmentOrder

public static $orders = array();

$orderlID;
$customerID;
$orderDate;
$delivered;
$deliveryDate;

function ___construct($orderID,$customerID,$orderDate, $delivered,$deliveryDate)

$this->orderID = $orderID;
$this->customerID = $customerID;
$this->orderDate = $orderDate;
$this->delivered = $delivered;
$this->deliveryDate = $deliveryDate;

public static function addOrder($customerID,$orderDate,$delivered, $deliveryDate)

include('user.inc');
$conn
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

$query="INSERT INTO outdoorEquipmentOrder VALUES ('','$customerID’,

= new mysqli(localhost, $username, $password, $database);

'$orderDate’, '$delivered’, '$deliveryDate’)";

echo"<p>".$query;
$result=mysqli_query($conn, $query);
$newOrderID = mysqli_insert_id($conn);
mysqli_close($conn);

return $newOrderID;

Save the file as OutdoorEquipmentOrder.php and copy it to the server. The addOrder() method saves the
record into the outdoorEquipmentOrder table. The computer creates an orderID as an auto-number. This
value is then returned as the variable SnewOrderID, which can be used to link to the individual item
records making up the order.

We can now create an EquipmentOrderltem class in a similar way. Open a blank file and add the attributes

shown.

<?

{

class EquipmentOrderItem

public static $items = array();
private $orderItemID;

private $orderID;

private $stockcode;

private $quantity;

Insert a constructor method and a method to add order items to the database table, as shown below.

301

Web-based programming projects

\

function __construct($orderItemID, $orderID,$stockcode,$quantity)

{
$this->orderItemID = $$orderItemID;
$this->orderID = $orderID;
$this->stockcode = $stockcode;
$this->quantity = $quantity;

}

public static function addItem($orderID,$stockcode,$quantity)

{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!'$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="INSERT INTO equipmentOrderItem VALUES ('', '$orderID',

'$stockcode’, '$quantity’)";
echo"<p>".$query;
$result=mysqli_query($conn, $query);
mysqli_close($conn);
N J
}
?>

Save the file as EquipmentOrderltem.php and copy it to the server.

Return to the enterOrder.php page. Add the lines of code shown below. These create an 'Enter order’
button. When clicked, this will load another web page where the order data will be saved to the database.
Save enterOrder.php and copy it to the server.

echo"<tr><td></td><td>".$address. "</td></tr>";
echo"<tr><td></td><td>".$town."</td></tr>";
echo"</table>";
echo"</form>";

?>

<form method=post action='saveOrder.php'>
<tr><td><center><input type=submit value='Enter order'></center></td></tr>
</form>

<tr><td>
<table class=stock cellspacing=10px>
<col width="800">

We will now create a saveOrder page which will handle the upload of data.

The program begins by collecting the customerID, and generating the current date which will be used as
the order date. This data is then saved as a record in the outdoorEquipmentOrder table. The new order
number is returned as a variable.

The next step is to collect the arrays containing the stock codes and quantities required for each of the
products. These arrays had been stored as session variables by the enterOrder web page.

Finally, a loop operates for each of the products. If one or more of the current product has been ordered, a
record is saved into the equipmentOrderitem table. This record contains the stock code, quantity
required, and the orderlID for the overall order.

Open a blank file and add the lines of program code below. Save the file as saveOrder.php and copy it to
the server.

302

Chapter 6: Delivery planning

<?

?>

session_start();

$customerWanted=$_SESSION['customerID'];

$today = date("Y-m-d");

include('OutdoorEquipmentOrder.php');

include('EquipmentOrderItem.php');

$newOrderID=0utdoorEquipmentOrder: :addOrder($customerWanted, $today, '',"'");
$stockcodes=$_SESSION['stockcodes'];

$count=count($stockcodes);

$quantity=$_SESSION['quantity'];

for ($i=1;%i<=%count;$i++)

{
if ($quantity[$i]>0)
{
EquipmentOrderItem::addItem($newOrderID,$stockcodes[$i],$quantity[$i]);
}
¥

$_SESSION['quantity']="";
header('Location: deliveries.php');

Before testing the program, save a blank file as deliveries.php and copy it to the server. Run the website.
Go to the 'Enter order' page and make an order, selecting a customer and specifying the quantities
required for several products. Click the 'Enter order' button. The program will save the order in the
database and then load the blank deliveries.php page.

Open the PHP MySQL website and carefully check that the order has been saved correctly:

Open the outdoorEquipmentOrder table. An order record should be present, with the customerID
shown as an integer.

Go to the deliveryCustomer table and check that the correct customer ID was used.

Return to the outdoorEquipmentOrder table and make a note of the orderID which was allocated

as

an auto-number.

Go now to the equipmentOrderitem table. Check that a record has been created for each of the
products ordered, and that the stock codes and quantities are shown correctly. Also check that the
orderID matches with the value given in the outdoorEquipmentOrder table.

We can now move on to create a table of the customer orders. Re-open the blank deliveries.php file and
add the lines of program code in the two boxes below.

<h
<h

</

<body>

<?
in
in
in
in
in
?>

<p>

tml>

ead>

<title> Delivery route </title>

<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
head>

clude('staffMenu.php');

clude('OutdoorEquipment.php');
clude('OutdoorEquipmentOrder.php');
clude('DeliveryCustomer.php');
clude('EquipmentOrderItem.php');

<table class=stock cellspacing=10px>
<tr class=stock>
<th class=stock>OrderID</th>

303

Web-based programming projects

<th class=stock>0Order date</th>
<th class=stock>Customer</th>
<th class=stock>Town</th>
<th class=stock></th>
<th class=stock>Delivered</th>
<th class=stock>Select for delivery</th>
<th class=stock>Delivery date</th>
<th class=stock>Delivery completed</th>
<th class=stock></th>
</tr>
</table>
</body>
</html>

Save the deliveries.php file and copy it to the server. Run the website and go to the 'Plan delivery' menu
option. The menu bar and table headings should be displayed.

Enter order Plan delivery Add customer

| OrderiD | Order date | Customer | Town | | Delivered | Select for delivery | Delivery date | Delivery completed | |

We must now add some methods to the object classes to provide data for the table of orders.

Open the OutdoorEquipmentOrder.php file and add the methods shown below. The loadOrders() method
will obtain all order records from the database and create a set of objects. The get() methods will allow
the individual attributes of these objects to be displayed on the web page.

public static function loadOrders())
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM outdoorEquipmentOrder";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
for ($i=1;%i<=%$num; $i++)
{
$row=mysqli_fetch_assoc($result);
$orderID=$row["orderID"];
$customerID=$row["customerID"];
$orderDate=$row["orderDate"];
$delivered=$row["delivered"];
$deliveryDate=$row["deliveryDate"];
$obj = new OutdoorEquipmentOrder($orderID, $customerID, E:il
$orderDate, $delivered, $deliveryDate);
OutdoorEquipmentOrder: :$orders[$i] = $obj;
}
return $num;
}
public function getOrderID(){return $this->orderID;}
public function getCustomerID(){return $this->customerliD;}
public function getOrderDate(){return $this->orderDate;}
public function getDelivered(){return $this->delivered;?}
_ public function getDeliveryDate(){return $this->deliveryDate;})
¥
?>

304

Chapter 6: Delivery planning

Save the OutdoorEquipmentOrder.php file and copy it to the server.

Open the DeliveryCustomer.php class file and add the loadCustomerByID() method shown below. This will
take the ID number of a customer, obtained from an order record, and use it to select the corresponding
customer record in the database. This will then be converted to an object, so that the individual attributes
of name, address and town can be obtained for display on the web page. Save the DeliveryCustomer.php
file and copy it to the server.

4 public static function loadCustomerByID($IDwanted))
{

include ('user.inc');

$conn = new mysqli(localhost, $username, $password, $database);

if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

$query="SELECT * FROM deliveryCustomer WHERE customerID =".$IDwanted;

$result=mysqli_query($conn, $query);

$num=mysqli_num_rows($result);

mysqli_close($conn);

$row=mysqli_fetch_assoc($result);

$customerID=$row["customerID"];

$companyName=$row["companyName"];

$address=$row["address"];

$town=$row["town"];

$x=$row["x"];

$y=grow["y"];

$obj = new DeliveryCustomer($customerID,$companyName,$address,$town,$x,%y);

DeliveryCustomer: :$customerObj[1] = $obj;

___J Y,
}

?>

Return now to the deliveries.php file and add the block of program code shown below.

<th class=stock>Delivery completed</th>
<th class=stock></th>
</tr>

/,7 <? \\

$orderCount=0utdoorEquipmentOrder: :loadOrders();

for ($i=1; $i<=%orderCount;$i++)

{
$delivered = OutdoorEquipmentOrder::$orders[$i]->getDelivered();
$orderID = OutdoorEquipmentOrder::$orders[$i]->getOrderID();
$orderDate = OutdoorEquipmentOrder::$orders[$i]->getOrderDate();
$IDwanted = OutdoorEquipmentOrder::$orders[$i]->getCustomerID();
$rearrangedDate = substr($orderDate,8,2)."-".substr($orderDate,5,2). E:il

"-".substr($orderDate,0,4);
echo"<tr><td class=stock>".$orderID."</td>";
echo"<td class=stock>".$rearrangedDate."</td>";
DeliveryCustomer::loadCustomerByID($IDwanted);
$companyName = DeliveryCustomer::$customerObj[1]->getCompanyName();
$town = DeliveryCustomer::$customerObj[1]->getTown();
echo"<td class=stock>". $companyName."</td>";
echo"<td class=stock>". $town."</td>";
echo"<td class=stock><input type=submit value='details'></td>";
echo"<td class=stock>". $delivered."</td>";
echo"</tr>";
}
N J
</table>
</body>

305

Web-based programming projects

Save the deliveries.php file and copy it to the server. Refresh the 'Plan delivery' web page. The program
code listed above contains a loop which operates for each order. The order ID and order date are obtained
from the OutdoorEquipmentOrder object. The customerlID is also obtained, then this is used to select the
corresponding DeliveryCustomer object, which provides the company name and town.

Enter order Plan delivery Add customer Add stock ien
"OrdeniD | Order date | Custemer T Tewn | [Detiverea | setect tor delivery Delivery date | Delivery completed | |
.1 .IJE-‘!Q-EUVP.«- Snawdania Maoniainspon | Btws-y-Coed | datas [.) -
|2 [06-10-2015 | Bay Waterspors | caratt |[etmns ||
4 |06-10-2018 | Mountain Gear [Newtown || deiais ||
6 | 06-10-2018 | Caser Ianis Clinbing Shop |Doigetay | [delams ||
7 [06-10-2015 | Bay Waterspors | carat st ||
'E' [DE-10-20 1$- Favlingl Syrt shﬂp | Peavlingh | delais |
B :us-mzms | Lakesice Walesports 'Baia || datais

A button has been added to each record which will allow full details of the order to be displayed, including
the quantities of each product required. Finally, a column indicates when an order has been delivered to
the customer.

We will now develop the record keeping system for deliveries. Return to the deliveries.php file and add
the program code shown below. Save the deliveries.php file and copy it to the server, then refresh the
web page.

echo"<td class=stock>". $town."</td>";
echo"<td class=stock><input type=submit value='details'></td>";
echo"<td class=stock>". $delivered."</td>";

/,7 if ($delivered=="YES') \\
{
echo"<td class=stock></td>";
$deliveredDate = OutdoorEquipmentOrder::$orders[$i]->getDeliveryDate();
echo"<td class=stock>".$deliveredDate."</td>";

}
else
{
echo"<td class=stock align='center'><input type=checkbox id='$orderID’
name="select' onclick="checkboxUpdate()'></td>";
}
if ($delivered=="YES')
{
echo"<td class=stock></td><td class=stock></td>";
}
else
{
echo"<form method=post action=deliveries.php?orderID=".$%orderID. E:il
"&delivery=YES>";
echo"<td class=stock><input type=date name=deliveryDate value='". Eiil
$dateDelivered."'></td>";
echo"<td class=stock align='center'><input type=checkbox E:il
name="'deliverCheckbox'></td>";

echo"<td ><input type=submit value='update'></td>";
echo"</form>";

! J

echo"</tr>";

}
?>
</table>

306

Chapter 6: Delivery planning

Checkboxes have been added to allow particular orders to be included in a delivery journey. A button
allows an order to be marked as 'delivery completed' and the delivery date recorded.

OrderiD | Order date Customer Town Deliverad | Select for delivery Delivery date Delivery completed

1 06-10-2019 | Snowdonia Mountainsport Betws-y-Coed o =] update |
2 06-10-2019 | Bay Walersporls Cardiff o o update |
4 06-10-2019 | Mountain Gear Newtown YES 2019-11-04

6 06-10-2019 | Cader Idris Climbing Shop Dolgeliau YES 2019-10-16

7 06-10-2019 | Bay Watersports Cardiff YES 2019-10-08

8 06-10-2019 | Pwlilheli Surf Shop Pwlheli o o update |
9 06-10-2019 | Lakeside Walersporls Bala o o update |

The next feature which we can add to the 'Plan delivery' web page is an option to list all orders, or only

those awaiting delivery. This will be selected by means of radio buttons:

Enter order Plan delivery Add customer
O Display all orders ® Display orders awaiting delivery
Orderll | Order date Customer Town Deliverad | Select for delivery

Return to the deliveries.php file and add the lines of program code show below.

include('OutdoorEquipmentOrder.php');
include('DeliveryCustomer.php');
include('EquipmentOrderItem.php');

?>
<p>

<form method=post action=deliveries.php>

<?

$display=$ REQUEST['display'];
if ($display=="'all')

{

echo"<input type='radio' name='display' value='all' E:il
onclick="this.form.submit()' checked> Display all orders";
echo"<input type='radio' name='display' value='awaiting' Eiil
onclick="this.form.submit()'> Display orders awaiting delivery";

else

echo"<input type='radio' name='display' value='all'

onclick="this.form.submit()'> Display all orders

echo"<input type='radio' name='display' value='awaiting'

}
?>
</form>
<p>

)

onclick="this.form.submit()' checked> Display orders awaiting delivery";il

<table class=stock cellspacing=10px>

<tr class=stock>
<th class=stock>OrderID</th>
<th class=stock>0Order date</th>

Continuing to work on the deliveries.php file, add the line of code shown below.

307

Web-based programming projects

<th class=stock>Delivery completed</th>
<th class=stock></th>
</tr>
<?
$orderCount=0utdoorEquipmentOrder::loadOrders();
for ($i=1; $i<=%$orderCount;$i++)

{
$delivered = OutdoorEquipmentOrder::$orders[$i]->getDelivered();

(: if (($display=='all')||($delivered !="YES")) :)
{

$orderID = OutdoorEquipmentOrder::$orders[$i]->getOrderID();
$orderDate = OutdoorEquipmentOrder::$orders[$i]->getOrderDate();
$IDwanted = OutdoorEquipmentOrder::$orders[$i]->getCustomerID();

Also add a closing bracket after the end of the table row.

echo"<td ><input type=submit value='update'></td>";
echo"</form>";

}

echo"</tr>";

}

?>
</table>
</body>

Save the deliveries.php file, copy it to the server and refresh the web page. When this page is completed,
it will be possible to display either all orders or just those waiting for delivery.

Display all orders ® Display orders awaiting delivery

OrderlD | Order date Customer Town Delivered | Select for delivery Delivery date

1 06-10-2019 | Snowdonia Mountainsport Betws-y-Coed || details ddfmm/yyyy

2 06-10-2019 | Bay Watersports Cardiff defails ddfmm/yyyy

8 06-10-2019 | Pwliheli Surf Shop Pwliiheli details dd/fmm/yyyy
= Display all orders ' Display orders awaiting delivery —
OrderlD | Order date Customer Town Delivered | Select for delivery Delivery date [——
1 06-10-2019 | Snowdonia Mountainsport Betws-y-Coed || defails da/ mm/yyyy
2 06-10-2019 | Bay Watersports Cardiff details dd/mm/yyyy
4 06-10-2019 | Mountain Gear Newtown details |[YES 2019-11-04
6 05-10-2019 | Cader Idris Climbing Shop Dolgellau details |[YES 2019-10-16
7 06-10-201%9 | Bay Watersports Cardiff details || YES 2019-10-08
8 05-10-2019 | Pwllheli Surf Shop Pwllheli details daf mm/yyyy

We can now arrange for the details of orders to be displayed when required. This will be done by clicking
the 'details' buttons.

308

Chapter 6: Delivery planning

Return to the deliveries.php file and add a block of code at the beginning of the program. This accesses an
array Sdetails[] which has an entry for each of the orders. The value is set to 0 if only the order summary
is required, and 1 if a full list of the items ordered are to be displayed.

//V <? ‘\\
session_start();
$details=$_ SESSION['details'];
$changeDetails=$_ REQUEST['changeDetails'];
if ($details[$changeDetails]==0)
$details[$changeDetails]=1;
else
if ($details[$changeDetails]==1)
$details[$changeDetails]=0;
$_SESSION['details’']=$details;

N y
<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
</head>

Go now to the <table> section of the program where the 'details' button is displayed. Create a <form>
block around the input line. This will cause the page to be reloaded when the button is pressed, with the
orderlID included in the URL. The entry for this order in the Sdetails[] array will then be updated.

$town = DeliveryCustomer::$customerObj[1]->getTown();
echo"<td class=stock>". $companyName."</td>";
echo"<td class=stock>". $town."</td>";

(: echo"<form method=post action='deliveries.php?display=". E:il :)
III>II;

$display."&changeDetails=".%i.

echo"<td class=stock><input type=submit value='details'></td>";

(: echo"</form>"; :)

echo"<td class=stock>". $delivered."</td>";
if ($delivered=="YES')
{

echo"<td class=stock></td>";

Go to a point near the end of the <table> and insert the block of code shown below.

echo"<td ><input type=submit value='update'>";

echo"</form>";

}

echo"</tr>";

if ($details[$i]==1)
{

}

}
}
?>
</table>
</body>

echo"<tr><td>Details</td></tr>";

309

Web-based programming projects

The program checks the Sdetails[] array as each order is displayed in the table. If a value of 1 is found for
the current line, a temporary test message with the word 'Details' will be displayed. This will allow us to
test that the program is working correctly.

Save the deliveries.php file and copy it to the server.

Run the 'Plan delivery' web page. Click on any of the 'details' buttons and a message line should appear
underneath. Clicking a second time should cancel the message line.

2 06-10-2019 | Bay Watersports Cardiff
8 06-10-2019 | Pwliheli Surf Shop i
Details 4—

9 06-10-2019 | Lakeside Walersports Bala
10 07-10-2019 | Cader Idris Climbing Shop Dolgellau

Return to the deliveries.php file. We can now produce a list of items ordered. Replace the "echo" test
message with the lines of program code shown below. These will display the stock code and quantity of
each product included in the order. Save the file and copy it to the server.

echo"<td ><input type=submit value='update'>";
echo"</form>";

}

echo"</tr>";

if ($details[$i]==1)

{

$itemCount=EquipmentOrderItem::loadItemsByOrderID($orderID); ‘\\
for ($n=1;%$n<=$itemCount;$n++)
{
$stockcode=EquipmentOrderItem::$items[$n]->getStockcode();
$quantity=EquipmentOrderItem: :$items[$n]->getQuantity();
echo"<tr><td>".$stockcode."</td>";
echo"<td>".$quantity."</td>";
echo"</tr>";

N /

Before running the program, we will need to add methods to EquipmentOrderltem class to select the
required order from the database and display the attributes on the page.

Open the EquipmentOrderltem.php file and insert a set of get() methods to allow access to the object
attributes:

public function getOrderItemID(){return $this->orderItemID;}
public function getOrderID(){return $this->orderID;}

public function getStockcode(){return $this->stockcode;}
public function getQuantity(){return $this->quantity;}

Continuing to work in the EquipmentOrderltem.php file, add a loadltemsByOrderID() method as shown
below.

310

Chapter 6: Delivery planning

-
{

public static function loadItemsByOrderID($IDwanted)

include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM equipmentOrderItem WHERE orderID =".$IDwanted;
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
$i=1;
while ($i <= $num)
{
$row=mysqli_fetch_assoc($result);
$orderItemID=$row["orderItemID"];
$orderID=%$row["orderID"];
$stockcode=$row["stockcode"];
$quantity=$row["quantity”];
$obj = new EquipmentOrderItem($orderItemID, $orderID,
$stockcode, $quantity);
EquipmentOrderItem::$items[$i] = $obj;
$i++;
}

return $num;

v

Save EquipmentOrderltem.php and copy it to the server.

Refresh the 'Plan delivery' web page and click any of the 'details' buttons. A list of the stock codes and

guantities ordered should now be shown.

OrderlID | Order date Customer Town Delivered
1 06-10-2019 | Snowdonia Mountainsport Betws-y-Coed
FW6792 4

AP5613 2

WS567 1

TN7856 1

2 06-10-2019 | Bay Watersports Cardiff
CNB72 2

4 06-10-2019 | Mountain Gear Newtown
6 06-10-2019 | Gader Idris Glimbing Shop Dolgellau
AP5613 2

CAB782 1

7 06-10-2019 | Bay Watersports Cardiff

We can now add the product title and price for each of the items. To do this, an additional method will be
required in the OutdoorEquipment class.

Open the file OutdoorEquipment.php and add the loadByStockCode() method shown below. Save the

OutdoorEquipment.php file and copy it to the server.

311

Web-based programming projects

4)
public static function loadByStockCode($codeWanted)
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM outdoorEquipment WHERE stockcode='".$codeWanted.""'";
$result=mysqli_query($conn, $query);
mysqli_close($conn);
$row=mysqli_fetch_assoc($result);
$productID=$row["productID"];
$stockCode=$row["stockcode"];
$title=$row["title"];
$category=$row["“category"];
$description=$row["description”];
$picture=$row["picture"];
$price=$row["price"];
$obj = new OutdoorEquipment($productID, $stockCode, $category, E:il
$title,$description, $picture, $price);
OutdoorEquipment: :$product[@] = $obj;

}

?>

Return to the deliveries.php file and add the lines of program code shown below. These will display the
title and price for each product, calculate each item total and the total cost for the order.

if ($details[$i]==1)

{
$itemCount=EquipmentOrderItem: :loadItemsByOrderID($orderID);
($total=0;)
for ($n=1;%$n<=$itemCount;$n++)
{
$stockcode=EquipmentOrderItem: :$items[$n]->getStockcode();
$quantity=EquipmentOrderItem::$items[$n]->getQuantity();
echo"<tr><td>".$stockcode."</td>";
echo"<td>".$quantity."</td>";

/,7 OutdoorEquipment: :loadByStockCode($stockcode);)
$productTitle=0OutdoorEquipment: :$product[0]->getTitle();
$price=0OutdoorEquipment::$product[0]->getPrice();
echo"<td>".$productTitle."</td>";
echo"<td>@ £".number_format($price,2)."</td>";
$itemtotal=$price*$quantity;
echo"<td><td>£" .number_format($itemtotal,2)."</td>";
$total=$total+$itemtotal;

\\, echo"<td colspan=4></td>"; 4/
echo"</tr>";

}
echo"<tr><td colspan=7></td><td>Total:</td>";
echo"<td>£" .number_format($total,2)."</td>";
echo"<td></td></tr>";
}
¥

}

?>

</table>

312

Chapter 6: Delivery planning

Save deliveries.php and copy it to the server. Run the website and go to the 'Plan delivery' page. Click any
of the 'details' buttons. Full details of the order should now be displayed, as in the example below.

OrderlD | Order date Customer Town Delivered | Select for delivery Delivery date Delivery completed
1 06-10-2019 | Snowdonia Mountainsport Betws-y-Coed &
FW6792 4 Light hiking boot @ £32.60 £130.40
AP5613 2 Alpine jacket @ £130.00 £260.00
WS567 1 Canadian canoe @ £488.30 £488.30
TN7856 1 Backpacking tent @ £65.00 £65.00
Total. £943.70
2 06-10-2019 | Bay Watersports Cardiff 5] 5]
4 06-10-2019 | Mountain Gear Newtown YES 2019-11-04

The next task on the 'Plan delivery' page is to handle the recording of deliveries. When a delivery is made,
the date will be entered, the 'Delivery completed' checkbox will be ticked, and the 'update’ button clicked.
The delivery record in the database will then be updated.

OrderlD | Order date Customer Town Deliverad | Select for delivery Delivery date Delivery completed
1 06-10-2019 | Snowdonia Mountainsport | Betws-y-Coed] [update |
2 06-10-2019 | Bay Watersports Cardift 8 @ [update |
8 06-10-2019 | Pwilheli Surf Shop Pwllheli 5] 8 [update |
9 06-10-2019 | Lakeside Watersports Bala o By % @ [update |
10 07-10-2019 | Cader Idris Climbing Shop | Dolgeliau o April 2020 - L= [update |
13 28-10-2019 | Sailing Centre New Quay =] Mon Tue Wed Thu Fri Sal Sun [update |
N - 30 3 1 2 3 4 5
14 31-10-2019 | Swansea Leisure Swansea [®] 6 7 8 9 1m0 1 12 | update|
33 14-03-2020 | Lakeside Watersports Bala 8] 1B 14 45 QUG 17 13 19 [updale |
20 2 22 23 24 25 28
34 14-03-2020 | Bay Island Watersporis | Barry a 7 2 29 30 1 2 3 [undate |

Re-open the deliveries.php file and add the block of program code shown below. This is called when an
'update’ button is clicked. The delivery date is obtained from the input box, the database record is updated,
then the page is refreshed.

include('OutdoorkEquipmentOrder.php');
include('DeliveryCustomer.php');
include('EquipmentOrderItem.php');

{

_}

$delivered="";
if ($deliveryCheckbox=="on")
$delivered="YES";
OutdoorkEquipmentOrder: :recordDelivery($delivered, $deliveryDate, $orderIDwanted);
header('Location: deliveries.php');

$orderIDwanted=$_ REQUEST['orderID'];
$deliveryCheckbox=$_ REQUEST['deliverCheckbox'];
$deliveryDate=$_REQUEST['deliveryDate'];

/ $orderCount=0utdoorEquipmentOrder: :loadOrders();
$delivery=$_REQUEST['delivery'];
if ($delivery=="YES')

J

?>
<p>

<?

<form method=post action=deliveries.php>

$display=$ REQUEST['display'];

313

Web-based programming projects

Save the deliveries.php file and copy it to the server. Open the file OutdoorEquipmentOrder.php and add
the recordDelivery() method shown below. Save the file and copy it to the server.

public static function recordDelivery($delivered,$deliveryDate,$orderIDwanted)
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="UPDATE outdoorEquipmentOrder SET delivered='$delivered’, E:il
deliveryDate="'$deliveryDate' WHERE orderID='$orderIDwanted'";
$result=mysqli_query($conn, $query);
mysqli_close($conn);
\} J
}
?>

Run the 'Plan delivery' web page. Select an order, enter a delivery date, tick the 'Delivery completed'
checkbox, then click the 'update' button. The page will be reloaded with only the orders still awaiting
delivery listed. Select the 'Display all orders' option. Check that the selected order is present, but now
marked as delivered with the delivery date shown.

The final step is to select orders for a delivery journey. Re-open the deliveries.php file and add the block of
program code shown below. This creates a button with the caption 'plan delivery route' and a function to
determine which of the 'Select for delivery' checkboxes have been ticked. Save the deliveries.php file and
copy it to the server.

echo"<input type='radio' name='display' value='awaiting'
onclick="this.form.submit()"' checked> Display orders awaiting delivery";
}
?>
</form>
<p>

~

4 <input type=button onClick=loadDeliveries(); value='plan delivery route'>
<script>
function loadDeliveries()
{
var checkboxes = document.getElementsByName("select");
var numberOfCheckedItems = 0;
var itemString="";
var found=false;
for(var i = @; i < checkboxes.length; i++)
{
if(checkboxes[i].checked)

{
if (found==true)
{

}
itemString=itemString +i;
found=true;

itemString=itemString +",";

}
}
window.location.assign("planRoute.php?select="+itemString);

}

</script>
P J

<table class=stock cellspacing=10px>

314

Chapter 6: Delivery planning

When clicked, the 'plan delivery route' button activates a function which examines each of the checkboxes
and makes up a text string with the sequence numbers of the boxes which are ticked. For example, the
sequence of ticks shown below would produce the output string: 0,2,3.

OrderlD | Order date Customer Town Delivered | Select for delivery Delivery
1 06-10-2012 | Snowdonia Mountainsport | Betws-y-Coed || details s dd/mm/yyyy
2 06-10-2019 | Bay Watersporis Cardift details dd/mm/yyyy
8 06-10-2019 | Pwliheli Surf Shop Pwilheli details =) dd/mm/yyyy
9 06-10-2019 | Lakeside VWatersporis Bala details ’ dd/mm/yyyy

Another page is then loaded, which we will now create. Open a blank file and add the program code:

<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />

</head>

<body>

<?

$select=$ REQUEST['select'];
echo"<p>select = ".$select;

$Aselect = explode (",", $select);
$locationTotal=count($Aselect);
include('OutdoorEquipmentOrder.php');
include('DeliveryCustomer.php');
$orderCount=0utdoorEquipmentOrder: :loadOrders();

$count=0;
for ($i=1;%$i<=%$orderCount;$i++)
{

$delivered = OutdoorEquipmentOrder::$orders[$i]->getDelivered();
if ($delivered !="YES")

$found=Ffalse;
for ($j=0;%j<$locationTotal;$j++)

{
if ($Aselect[$j]==%count)
$found=true;
}
if ($found==true)
{
$orderID = OutdoorEquipmentOrder::$orders[$i]->getOrderID();
$customerID = OutdoorEquipmentOrder::$orders[$i]->getCustomerID();
echo"<p>orderID=".%$orderID." customerID=".$customerID;
DeliveryCustomer: :loadCustomerByID($customerID);
$companyName = DeliveryCustomer::$customerObj[1]->getCompanyName();
$town = DeliveryCustomer::$customerObj[1]->getTown();
$x = DeliveryCustomer::$customerObj[1]->getX();
$y = DeliveryCustomer::$customerObj[1]->getY();
echo", ".$companyName.", ".$town." (".$x.":".$y.")";
}
$count++;
}
}
?>
</body>
</html>

315

Web-based programming projects

Save the file as planRoute.php and copy it to the server. This page carries out route calculations and will
not be visible to the user in the final website, but we will display it for test purposes.

Run the website. Ensure that orders have been entered for about eight customers in different locations
across the delivery area. Select most of the orders for delivery, leaving one or two unticked as in the
example below.

© Display all orders ® Display orders awaiting delivery

OrderlD | Order date Customer Town Delivered | Select for delivery
1 06-10-2019 | Snowdonia Mountainsport | Betws-y-Coed @
2 06-10-2019 | Bay Watersports Cardiff @
8 06-10-2019 | Pwilneli Surf Shop Pwliheli @
9 06-10-2019 | Lakeside Watersports Bala e
10 07-10-2019 | Cader Idris Climbing Shop | Dolgellau @
13 28-10-2019 | Sailing Centre New Quay @
14 31-10-2019 | Swansea Leisure Swansea 5]
33 14-03-2020 | Lakeside Watersports Bala @
34 14-03-2020 | Barry Island Watersports | Barry @

Click the 'plan delivery route' button. The planRoute.php page should then be loaded.

The text string is displayed, made up from the sequence numbers for the ticked boxes. This information is
then used to display details of the orders, including the delivery town and its map coordinates. Check that
the output corresponds with the series of orders selected.

select=01,2456,7.8

orderlD=1 customerlD=7, Snowdonia Mountainsport, Betws-y-Coed (565:243)
orderlD=2 customerlD=6, Bay Watersports, Cardiff (791:1209)

orderlD=8 customerlD=16, Pwllheli Surf Shop, Pwllheli (335:353)

orderlD=10 customerlD=14, Cader Idris Climbing Shop, Dolgellau (333:4486)
orderlD=13 customerlD=9, Sailing Centre, New Quay (358:767)

orderlD=14 customerlD=5, Swansea Leisure, Swansea (510:1094)

orderlD=33 customerlD=15, Lakeside VWatersports, Bala (642:3453)

orderlD=34 customerlD=32, Barry Island Watersports, Barry (752:1239)

We will now create a lookup table containing the distances in screen pixels between all possible pairs of
delivery points. Return to the planRoute.php file and add the blocks of program code shown below.

Since the delivery van will depart from the depot in Newtown, the map coordinates of the depot are
entered and this location is included in the distance table.

316

Chapter 6: Delivery planning

include('DeliveryCustomer.php');
$orderCount=0utdoorEquipmentOrder: :loadOrders();
$count=0;

$routeCustomerID[0]=0;
$routeTown[@]="Newtown"';
$routeCount=0;

for ($i=1;%$i<=%$orderCount;$i++)

{
$delivered = OutdoorEquipmentOrder::$orders[$i]->getDelivered();
if ($delivered !="YES")

{
$x = DeliveryCustomer::$customerObj[1]->getX();
$y = DeliveryCustomer::$customerObj[1]->getY();
echo", ".$companyName.", ".$town." (".$x.":".$y.")";
$routeCount++;
$routeCustomerID[$routeCount]=$customerID;
$routeTown[$routeCount]=$town;
}
$count++;
}
}
4 echo"<p>";)

echo"<table class=stock>";
echo"<tr>";

echo"<td class=stock></td>";
for($i=0;$i<=$routeCount;$i++)

{

}
_ echo"</table>";)

echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>"

?>
</body>
</html>

Save the planRoute.php file and copy it to the server, then refresh the web page. Column headings for the
table should be shown. Check that the set of customerIDs and delivery locations is correct.

0 Newtown | 7 Betws-y-Coed | 6 Cardiff | 16 Pwilneli| 14 Dolgellau | 9 New Quay | 5 Swansea | 15 Bala | 32 Barry |

Return to the planRoute.php file add lines of program code to produce row titles for the table.

echo"<td class=stock></td>";
for($i=0;$i<=$routeCount;$i++)
{
echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";
}
for($i=0;$i<=%$routeCount;$i++)
{
echo"<tr>";
echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";
}
echo"</table>";
?>
</body>
</html>

317

Web-based programming projects

Save planRoute.php, copy it to the server and refresh the web page. All table captions should now be
displayed.

0 Newtown | 7 Betws-y-Coed | 6 Cardiff | 16 Pwilneli| 14 Dolgeliau | 8 New Quay | 5 Swansea | 15 Bala | 32 Barry |

0 Mewtown

7 Betws-y-Coed
6 Cardift

16 Pwilheli

14 Dalgellau

9 New Quay

5 Swansea
15 Bala
32 Barry

The next step is to calculate the journey distances between pairs of locations. This can be done easily using
Pythagoras' theorem, as in the diagram below. The difference in horizontal coordinates (x1-x2) and the
difference in vertical coordinates (yi-y:) are found. These values are then used to calculate the straight line
distance in screen pixels between the points by means of the formula:

distance = /(x; — %)% + (y1 — ¥2)?

,,,,,,,,,,,,,,,,,,,,,,,,,,,

X1-%2 (x2y2)

Return to the planRoute.php file. Add the lines of code shown in the boxes below.

$orderCount=0utdoorEquipmentOrder: :loadOrders();
$count=0;

$routeCustomerID[0]=0;

$routeTown[@]="Newtown"';

$routeX[0]=738;
$routeY[0]=585;
$routeCount=0;
for ($i=1;%$i<=%orderCount;$i++)

$x = DeliveryCustomer::$customerObj[1]->getX();

$y = DeliveryCustomer::$customerObj[1]->getY();
echo", ".$companyName.", ".$town." (".$x.":".$y.")";
$routeCount++;
$routeCustomerID[$routeCount]=$customerID;
$routeTown[$routeCount]=$town;

$routeX[$routeCount]=%$x;
$routeY[$routeCount]=%y;

¥
$count++;
}
}
echo"<p>";

echo"<table class=stock>";
echo"<tr>";
echo"<td class=stock>";

318

Chapter 6: Delivery planning

Continuing to work in the planRoute.php file, add the further block of code shown below.

for($i=0;%$i<=%$routeCount;$i++)
{
echo"<tr>";
echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";
4 for ($j=0;%j<=%$routeCount;$j++))
{
$Xdifference = $routeX[$i]-$routeX[$i];
$Ydifference = $routeY[$i]-$routeY[$i];
$distance = $Xdifference*$Xdifference+$Ydifference*$Ydifference;
$distance = sqrt($distance);
echo"<td class=stock>".number_format($distance,0);
$1link[$i][$j]=%distance;
}
- J
}
echo"</table>";

The blocks of code begin by providing the map coordinates for the depot, then make use of the loop to
create SrouteX[] and SrouteY[] arrays which contain the map coordinates for all delivery points. The
depot itself is treated as point O.

Nested loops then operate to access each cell of the table. Straight line distances in screen pixels are
calculated using Pythagoras' formula, then displayed in the table. Points on the principal diagonal will, of
course, show zero distances as the start and finish locations are the same.

Save the planRoute.php file and copy it to the server. Refresh the page and check that a table of distances
is displayed, as in this example.

0 Newtown | 7 Betws-y-Coed | &6 Cardiff | 16 Pwllheli | 14 Dolgellau | 9 New Quay | 5 Swansea | 15 Bala | 32 Barry
0 Newtown 0 383 626 464 248 421 558 258 654
T Betws-y-Coed | 383 0 992 256 206 563 853 128 1,013
& Cardift 626 992 0 958 805 519 304 87T 49
16 Pwllheli 464 256 9568 0 218 413 759 307 977
14 Dolgellau 248 2085 805 218 0 366 548 149 823
9 New Quay 421 563 619 413 366 0 361 509 615
5 Swansea 558 853 304 759 648 361 0 761 282
15 Bala 258 128 87T 307 149 509 781 0 901
32 Barry 654 1,013 49 97T 823 615 282 a0 0

In the next stage of the program, we will make use of the Nearest Neighbour algorithm to find the shortest
route which leaves the depot, visits all delivery points and then returns to the depot. The algorithm
sequence is:

Choose a starting point. This is the CURRENT point and is recorded as 'visited'.
Initialise the total journey distance to zero.
REPEAT
Select the nearest point on the route to the CURRENT point which has not yet been
visited. This becomes the new CURRENT point.
Add the distance for this leg of the journey.
Record that the CURRENT point has now been visited.
UNTIL every point on the route has been visited.
Add the direct distance from the CURRENT point back to the starting point to close the loop.

319

Web-based programming projects

This algorithm will generally produce a satisfactory solution for any starting point along the route.
However, this may not be the shortest route possible. To be sure of finding the shortest journey, it is
necessary to repeat the algorithm for each of the possible starting points.

A program design to implement the algorithm is shown in the flow chart.

> Select start location -t { Start }

Y

set currentLocation = start location

!

set totalDistance = 0

/

set all locations except the start as unvisited

\

A

find the closest unvisited location
to the current location - this will
be the next location on the route

Y

add (distance to next location) to the totalDistance

\

set currentLocation = next location

Y

set current location as visited

Y

any remaining
unvisited locations?

No

AJ

add (distance to start location) to the totalDistance

Y

shortest distance
so far?

update shortest route |«g—Ye
and distance

any remaining

Yes possible start locations?

No output sequence of locations along st
) the route, and total distance op

320

Chapter 6: Delivery planning

Return to the planRoute.php file and add the block of program code shown in the two boxes below, then
save the planRoute.php file and copy it to the server.

echo"<td class=stock>".number_format($distance,®);
$1link[$i][$j]=%$distance;
}
}
echo"</table>";
4 for ($start=0; $start<=$routeCount; $start++))
{
$current = $routeCustomerID[$start];
for ($i=0;%$i<=%$routeCount;$i++)
$visited[$i]=Ffalse;
$visited[$start]=true;
$finished=false;
$totalDistance=0;
$pointCount=0;
while ($finished==false)
{
echo"<p>current = ".$current;
for ($j=0;%j<=%$routeCount;$j++)
{
if ($routeCustomerID[$]j]==%$current)
{
echo" - ".$routeTown[$j]." - REMAINING: ";
$first=true;
for ($i=0;%$i<=%$routeCount;$i++)
if ($visited[$i]==Ffalse)
{
echo" ".$routeTown[$i]. Eiil
"(".number_format($link[$i][$j],0).")";
if ($first==true)
{
$min=$1ink[$i]1[$7]1;
$next=9%$i;
$first=Ffalse;
}
else
{
if ($1ink[$i][$j]1<$min)
{
$min=$1link[$i][$7];
$next=9%$i;
}
}
}
}
$totalDistance=$totalDistance+$min;
}
}
$current=$routeCustomerID[$next];
$visited[$next]=true;
$finished=true;
- J

321

Web-based programming projects

$totalDistance=$totalDistance+$min;
}
}
$current=$routeCustomerID[$next];

$visited[$next]=true;
$finished=true;

for ($i=0;$%$i<=$routeCount;$i++)
{
if ($visited[$i]==Ffalse)
$finished=false;
¥
}
echo"<p>current = ".$current.” - ".$routeTown[$next];
$returnDistance = $link[$next][$start];
echo"<p>Return distance to ".$routeTown[$start].
" = ".number_format($returnDistance,9);
$totalDistance=$totalDistance+$returnDistance;
echo"<p>TOTAL DISTANCE = ".number_format($totalDistance,0);
echo"<p><hr><p>";
\ J
?>
</body>
</html>

Refresh the planRoute.php page and examine the output. The program implements the Nearest
Neighbour algorithm for each of the possible starting points around the delivery route.

The first block of output shown below begins at the Newtown depot (location 0). At each stage, a list is
given of the remaining unvisited locations and their distances in screen pixels from the current location.
The program then selects the closest point to become the new current location. This procedure continues
until all points have been visited, then the distance back to the starting point is added. Carefully check that
the algorithm has been performed correctly for your test data, for each of the possible starting points.

current = 0 - Newtown - REMAINING: Betws-y-Coed(383) Cardifi(626) Pwllheli{464) Dolgellau(248) New Quay(421) Swansea(558) Bala(258) Barry(654)
current = 14 - Dolgellau - REMAINING: Betws-y-Coed(206) Cardifi(305) Pwliheli(218) New Quay(366) Swansea(648) Bala(149) Barry(523)

current = 15 - Bala - REMAINING: Betws-y-Coed(128) Cardiffi(377) Pwlliheli{307) New Quay(509) Swansea(751) Barry(301)

current = 7 - Betws-y-Coed - REMAINING: Cardiff(992) Pwllheli{256) New Quay(563) Swansea(853) Barry{1,013)

current = 16 - Pwllheli - REMAINING: Cardiff(968) New Quay(413) Swansea(759) Barry(977)

current = 9 - New Quay - REMAINING: Cardiff(519) Swansea(361) Barry(515)

current = 5 - Swansea - REMAINING: Cardifi(304) Barry(282)

current = 32 - Barry - REMAINING: Cardiff{49)

current = 6 - Cardiff

Return distance to Newtown = 626

TOTAL DISTANCE = 2,511

Return to the planRoute.php file. It is necessary to keep a record of the most suitable route for the
delivery journey.

Begin by adding a session_start() command at the beginning of the page. This will allow the route details
to be stored for further use.

322

Chapter 6: Delivery planning

<?
session_start();
?>
<html>
<head>
<title> Delivery route </title>

Add an array variable SrouteCustomerWanted[0] to record the start point for the current route.

$totalDistance=0;
$pointCount=0;

($routeCustomerWanted[@]=$current;)
while ($finished==false)
{

Add the lines of program code shown below.

$totalDistance=$totalDistance+$min;

}
}

$current=$routeCustomerID[$next];
$visited[$next]=true;

$pointCount++;
$routeCustomerWanted[$pointCount]=$current;

$finished=true;
for ($i=0;%$i<=$routeCount;$i++)

{
if ($visited[$i]==False)

$totalDistance=$totalDistance+$returnDistance;
echo"<p>TOTAL DISTANCE = ".number_format($totalDistance,9);
echo"<p><hr><p>";

4 if ($start==0))
{

$minTotal=$totalDistance;
$minRoute=0;

}

else

if ($totalDistance<$minTotal)
{
$minTotal=$totalDistance;
$minRoute=$start;
}
}

$pointCount++;
$routeCustomerWanted[$pointCount]=$routeCustomeriWanted[0];
if($minRoute==%$start)

_ $_SESSION["routeCustomerWanted"]=$routeCustomerWanted;)

}

?>

<form method=post action='route.php'>
<input type=submit value='continue'>
</form>

</body>

323

Web-based programming projects

Save the planRoute.php file and copy it to the server.

The additional program lines inserted above will store values in the SrouteCustomerWanted[] array as
each journey point is found. This is an array which records the sequence of delivery points by means of the
customerlD values. When the route is completed, the total journey distance is checked to determine
whether this is the shortest route found so far. If so, the array is stored as the routeCustomerWanted
session variable. After all processing is completed, a ‘continue' button will lead to the next web page. We
will create this page now.

Open a blank file and insert the program code shown below.

<?
session_start();
?>
<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
<script src="p5.js"></script>
<script src="p5.dom.js"></script>
</head>
<body>
<?
include('staffMenu.php');
include('DeliveryCustomer.php');
$routeCustomerWanted = $_SESSION["routeCustomerWanted"];
$locationTotal=count($routeCustomerWanted);
for ($i=0; $i<$locationTotal; $i++)

{
$customerIDwanted = $routeCustomerWanted[$i];
echo"
point ".$i.": ".$customerIDwanted;
if ($customerIDwanted==0)
{
$town[$i]="Newtown';
$x[$1]=738;
$y[$1]=585;
}
else
{
DeliveryCustomer: :loadCustomerByID($customerIDwanted);
$town[$i]=DeliveryCustomer::$customerObj[1]->getTown();
$x[$i]=DeliveryCustomer: :$customerObj[1]->getX();
$y[$i]=DeliveryCustomer: :$customerObj[1]->getY();
}
echo": ".$town[$i]." (".$x[$i].", ".$y[$i].")";
}
?>
</body>
</html>

Save the file as route.php and copy it to the server. Run the website, select orders for delivery then move
on to calculate the shortest delivery route. Click the 'continue' button after the calculations are completed.
A new page opens, listing the order in which customers will be visited. Notice that the sequence ends by
repeating the first point specified, so that a closed loop is formed. In practice, the journey would begin and
end at the Newtown depot.

point 00 9 New Quay (358, 767)
peint 1: 5 Swansea (510, 1094)
point 2: 32: Barry (752, 1239)

point 3: 6 Cardiff (791, 1209)

point 4: 0 Newtown (738, 585)
peoint 5: 14: Dolgellau (533, 446)
point &: 15: Bala (642, 345)

point 7: 7: Betws-y-Coed (565, 243)
point 8 16; Pwllheli (335, 355)

324 point 9 9: New Quay (358, 767)

Chapter 6: Delivery planning

Return to the route.php file and add the blocks of p5.js program code shown below. These create a
scrolling map, similar to the map used earlier for the input of customers.

$y[$i]=DeliveryCustomer: :$customerObj[1]->getY();

}
echo": ".$town[$i]." (".$x[$i].", ".$y[$i].™)";
}

?>

<p>
<script>

var scrollPosition=0;

var vPos;

var ratio;

var scrollSelected = false;

function preload()

{
imgl=loadImage("map.png");

}

function setup()
{
createCanvas(1000, 640);

}

function draw()
{
ratio = 1260/640;
tv = map(scrollPosition, @, height, 0, 1264-height);
translate(0, -tv);
image(imgl, 0, 0);
scrollbar(scrollPosition);
x=mouseX;
y=mouseyY;
if (x>=960)
{
fill(e);
rect(986,vPos,14,14);
if (mouselsPressed==true)
{
scrollPosition=y;
if (scrollPosition<®)

{

scrollPosition=0;

if (scrollPosition>640)

{
}

scrollPosition=640;

}
</script>)

\.

</body>
</html>

Add the scrollbar() method shown below.

325

Web-based programming projects

-

function scrollbar(scrollPosition)

{
noStroke();
fill(204);
rect(986,0,14,1264);
if (scrollSelected==false)

{
}

else

fill(102);

£il1(49);
}
vPos = scrollPosition * ratio;
rect(986,vPos,14,14);

N /

</script>
</body>
</html>

Save the route.php file and copy it to the server. Refresh the page. Check that the map is displayed in a
window, and can be scrolled by means of the bar at the right of the window.

Return to the route.php file. The next step is to display the delivery route on the map. Begin by adding
lines of program code to convert PHP arrays to JavaScript arrays, so that customer IDs and map coordinates
for points along the route are available in p5.js.

$y[$i]=DeliveryCustomer: :$customerObj[1]->getY();
}
echo": ".$town[$i]." (".$x[$i].", ".$y[$i].™)";
.
<p>
<script>

var routeX = <? echo json_encode($x) ?>;

var routeY = <? echo json_encode($y) ?>;

var routeCustomer = <? echo json_encode($routeCustomerWanted) ?>;
var locationTotal=<? echo $locationTotal ?>;

var scrollPosition=0;

var vPos;

var ratio;

var scrollSelected = false;

function preload()

{
¥

imgl=loadImage("map.png");

We will now add a drawRoute() method to the <script> block after the draw() method. This new method
contains a loop which will operate for each of the points listed in the delivery route. Red circular markers
are placed at each of the delivery points, and the points along the route are connected by straight lines.

326

Chapter 6: Delivery planning

Add a line of code at the end of the draw() method, as shown below, to call drawRoute() when the screen

display is refreshed.

if (scrollPosition>640)

—/

{
scrollPosition=640;
}
}
}
(: drawRoute();
}
//' function drawRoute() ‘\\
{
for (var i=0; i<(locationTotal-1); i++)
stroke(9);
line(routeX[i],routeY[i],routeX[i+1],routeY[i+1]);
£i11(255,0,0);

ellipse(routex[i],routeY[i],10,10);

¥
£111(255,0,0);
ellipse(routex[0@],routeY[0],10,10);

_}

)

function scrollbar(scrollPosition)

{

Save the route.php file, copy it to the server, then refresh the page. The route should now be displayed on
the map as shown on the page below, and can be viewed in full by scrolling the map up and down. Check
that the delivery points are in the correct positions on the map and have been linked in the correct

sequence.
o7 ~uangoben,., | Whitchur
Pou"{imdogl 3 {
Snowdania |
2 |
Natignal Park |
Oswestry 4
/ N\
/
/
Barmouth) % ¥
rmoL Do@illau Sheawsbury |
| A~ \ -
/4
T Welshpool]Y Trallwng /
e Machynlieth H
o |

)
/

Aberyg\y/yth‘ R

P Lampeter Lianwrtyd Wells
Cardigan/Aberteifi d

/M/omgomery

Bishop's Castle

Knighton {
Presteigne

‘King(onf 2=

327

Web-based programming projects

Whilst a correct sequence of points has been plotted, the route is clearly oversimplified - with one of the
links crossing the sea! In other places, the route does not follow the actual road pattern with sufficient

accuracy. We can resolve this problem by allowing additional points to be added between customer

locations: Ruthin

The user will be able to add a route point to any of
the |inkS. Ffestiniog

Ruthin

The new route point may then be dragged to the
required position on the road network.

Ffestiniog

Lampeter Lianwr1

srdigan/Aberteifi
Additional route points may be

added and dragged into position as
necessary, until the link between
delivery locations has been defined
with sufficient accuracy.

Newcastle Emlyn

Llandovery/Uanymddyfr

Llangeilo

werth Ammanford

Kidwelly

Lianeli
bych-Y-Pysgod SN

SWANSEA/ABERTAWE
Maes

The routes between delivery points can be stored in a database table in the form of a linked list. Let us
suppose that the first link of the delivery journey is a straight line segment linking the customer identified

by customerlID 5, and the customer identified by customerID 2. The x and y map coordinates of each of the
route points are known.

customerlD 5
(x1, y1)

customerlD 2
328 (x2, y2)

Chapter 6: Delivery planning

A record for each point is inserted in a roadPoints table. The customerID values are recorded for only the
starting point of the link, with zero values inserted for the end point. The map coordinates are then added
for both points. Finally, a pointer in the start record links to the destination record, in this case with
roadPointID 2. The pointer at the destination is set to -1.

roadPointID | fromCustomer | toCustomer Xpos ypos pointer
I:_ start 1 5 2 X1 V1 (2)
> 2 0 0 X2 y2 -1

The linked list structure can easily allow for the addition of intermediate points in the link.

customerID 5

(x1, y1)

(x3, y3)
customerID 2

(x2, y2)

If another point is added, a record is inserted in the next available location in the table: in this case at
roadPointID 3. The pointers are adjusted to link the points in the correct sequence from the start to the

destination.
roadPointID | fromCustomer | toCustomer Xpos ypos pointer
start 1 5 2 X1 Y1 (3)
E_> 2 0 0 X2 Y2 -1
> 3 0 0 X3 Y3 (2)

The pointer from record 1 now links to record 3, and the pointer from record 3 links to record 2 which is

the destination. The end of the sequence is marked by a -1 pointer value.

It will be convenient to also include a backpointer, which will allow the sequence of points to be followed
in reverse order. The backpointer values will lead from any point to the start of the link, where the
sequence is terminated by a -1 value. For example, beginning at roadPointID 2:

roadPointID | fromCustomer | toCustomer Xpos ypos pointer backpointer
> 1 5 2 X1 Y1 3 -1
|____ start 2 0 0 X2 Y2 -1 @)
> 3 0 0 X3 Y3 2 (1)

~~

The pointer at record 2 now links to record 3, and the pointer at record 3 now links to record 1 which was
the start point.

We can set up a procedure for initialising the linked lists in a roadPoints table. Each link of the delivery
route will require two roadPoint records representing the start and finish points, as in the example below.
The records are connected forwards and backwards by the pointers.

roadPointID | fromCustomer | toCustomer Xpos YpOs pointer backpointer
I:-start 1 5 2 X1 Vi (2) -1 :I
> 2 0 0 X2 V2 1 (1) back

329

Web-based programming projects

The flowchart illustrates the steps required. The route will first be calculated by means of the Nearest
Neighbour algorithm. Each link between a pair of delivery points along the route is then considered. A
linked list connecting the points may already be present in the road point table. If not, a record pair will be
created. Pointer values are set using the roadPointID values which are allocated by the computer as auto-
numbers when the records are added to the table.

Plan route

Y

Get next link along the route.
Find start customerID and finish
customeriD

Link
already present in
the roadPoints
table?

No
Y

Add record for start point. Include: start and finish
customerlD, x and y coordinates. Set
backpointer to -1

Y

Note the roadPointiD
allocated to the start point

Y

Add record for finish point. Include x and y coordinates.
Yes Set customerID values to 0. Set pointer to -1, and
backpointer to start roadPointlD

!

Note the roadPointlD
allocated to the finish point

Y

Update the start point record. Set the
pointer to finish roadPoint!D

.
-

Y

Anothek

along the route?

No

330

Chapter 6: Delivery planning

To implement the linked list, we will begin by creating the database table. Go to the PHP MyAdmin page,
list the tables and select the 'new' option. Set up a table with the name roadPoints and add the fields
shown below. All fields have the data type integer. The roadPointID field is identified as the primary key,
and is set to auto-increment as records are added.

HName Type Collation Attributes Null Default Comments Extra

1 roadPointlD > int{11) No MNone AUTC_INCREMENT
2 fromCustomer int{11) Mo MNone

3 toCustomer int{11) Mo MNaone

4 xpos int{11) No MNone

5 vypos int{11) Mo MNone

6 pointer int{11) No MNone

7 backpointer int{11) Mo None

We will create a RoadPoints class to handle the set of linked lists. Open a blank file and add the lines of
program code below.

The class begins by defining the attributes for a RoadPoint object. These correspond with the fields of the
database table. Notice that the attributes have been defined as public, rather than private. This is to allow
the objects to be translated into JavaScript by means of JSON encoding, as we did previously in the Caravan
Park project in chapter 4. A constructor method is then added.

<?

class RoadPoints

{
public static $location = array();
public $roadPointID;
public $fromCustomer;
public $toCustomer;
public $xpos;
public $ypos;
public $pointer;
public $backpointer;

function __construct($roadPointID, $fromCustomer, $toCustomer,
$xpos,$ypos,$pointer,$backpointe;§:il
{
$this->roadPointID = $roadPointID;
$this->fromCustomer = $fromCustomer;
$this->toCustomer = $toCustomer;
$this->xpos = $xpos;
$this->ypos = $ypos;
$this->pointer = $pointer;
$this->backpointer = $backpointer;
}
}

?>

Add the checkStartFinish() method shown below.

The checkStartFinish() method will scan through the database table to determine whether a linked list
joining the specified pair of delivery points already exists in the table. If so, the roadPointID at the start of
the list will be returned. If not, a result of 0 is returned.

331

Web-based programming projects

public static function checkStartFinish($startID, $finishID)
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM roadPoints WHERE fromCustomer='$startID’ E:il
AND toCustomer='$finishID'";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
if ($num==0)
{

}

else

{

return 0;

$row=mysqli_fetch_assoc($result);
$roadPointID=$row["roadPointID"];
return $roadPointID;

We will now move on to create a new linked list pair if none is found during the search. Add the
createlLink() method shown below to the RoadPoint class file. This stores two records, one for the starting
point and one for the destination of the link. It is necessary to return to the start record to update the
pointer value once the destination record has been created, and its RoadPointID has been allocated by the
computer.

~
public static function createlLink($startID,$finishID,$startX, E:il
Y)

$startY,$finishX,$finish
{

include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="INSERT INTO roadPoints VALUES ('', '$startID','$finishID",
"$startX’, "$starty’,'0',"-1"')";
$result=mysqli_query($conn, $query);
$startRoadPointID = mysqli_insert_id($conn);
$query="INSERT INTO roadPoints VALUES ('','®@','@', '$finishX", E:il
'$finishy','-1', '$startRoadPointID"')";
$result=mysqli_query($conn, $query);
$finishRoadPointID = mysqli_insert_id($conn);
$query="UPDATE roadPoints SET pointer='$finishRoadPointID'
WHERE roadPointID = '$startRoadPointID'";
$result=mysqli_query($conn, $query);
mysqli_close($conn);

Save the class file as RoadPoints.php and copy it to the server.

332

Chapter 6: Delivery planning

Return to the route.php page file. Add lines of program code as shown below. Each step of the delivery
route is considered in turn. The checkStartFinish() method in the RoadPoints class is called to check
whether a linked list already exists for this step of the route. If not, the createLink() method is called to

produce

a linked list pair.

DeliveryCustomer: :loadCustomerByID($customerIDwanted);
$town[$i]=DeliveryCustomer: :$customerObj[1]->getTown();
$x[$i]=DeliveryCustomer: :$customerObj[1]->getX();
$y[$i]=DeliveryCustomer::$customerObj[1]->getY();

}
echo": ".$town[$i]." (".$x[$i].", ".$y[$i].")";

}
4 in
fo
{

_}

clude('RoadPoints.php');
r ($i=0; $i<($locationTotal-1); $i++)

$start = $routeCustomerWanted[$i];

$finish = $routeCustomerWanted[$i+1];

$result = RoadPoints::checkStartFinish($start,$finish);
if ($result==0)

{

}

RoadPoints::createLink($start,$finish,$x[$i],$y[$i],$x[$i+1],$y[$i+1]);

?>
<p>
<sc

ript>

Save the route.php file and copy it to the server. Run the website and go to the 'Plan delivery' page. Select

a set of orders for delivery, then continue to the route calculation and map display. The sequence of

delivery

points will be listed.

Go now to the PHP MyAdmin website and open the roadPoints table. Check that a series of linked list pairs
have been created which correspond with the steps of the selected delivery route, as in the example below.

roadPointlD fromCustomer toCustomer xpos ypos pointer backpointer
1 9 5 358 767 2 -1
2 0 0 510 1094 -1 1
3 5 32 510 1094 4 -1
4 0] 752 1238 -1 3
5 32 5 752 1238 6 -1
6 0 0 791 1209 -1 5

The next task is to adapt the program so that the route is drawn from the data contained in the roadPoints

table.

Re-open the RoadPoints.php file and add the loadRoadPoints() method shown below. This accesses the
roadPoints table in the database and creates a set of RoadPoint objects. Save RoadPoints.php and copy it
to the server.

333

Web-based programming projects

public static function loadRoadPoints()
{
include('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="SELECT * FROM roadPoints";
$result=mysqli_query($conn, $query);
$num=mysqli_num_rows($result);
mysqli_close($conn);
for ($i=1;%i<=%$num; $i++)
{
$row=mysqli_fetch_assoc($result);
$roadPointID=$row["roadPointID"];
$fromCustomer=$row["fromCustomer"];
$toCustomer=$row["toCustomer”];
$xpos=$row["“xpos"];
$ypos=$row["ypos"];
$pointer=$row["pointer"];
$backpointer=$row["backpointer"];
$obj = new RoadPoints($roadPointID, $fromCustomer,
$toCustomer, $xpos, $ypos, $pointer, $backpointer);
RoadPoints::$location[$i] = $obj;
}

return $num;
! Y,
¥

?>

Return to the route.php file and locate the drawRoute() function. Replace the line() command with a call
to a new function plotLink() as shown below.

function drawRoute()

{
for (var i=0; i<(locationTotal-1); i++)
stroke(9);
(: plotLink(routeCustomer[i], routeCustomer[i+l]); :)

£i11(255,90,0);
ellipse(routex[i],routeY[i],10,10);

}
£i11(255,0,0);
ellipse(routex[0],routeY[0],10,10);
}

Add the plotLink() function immediately underneath drawRoute() method, as shown below. The function
begins by checking each of the RoadPoint objects, to see if the start and finish customerID values are
present as attributes. If so, this RoadPoint object will be the start of a linked list of points joining the
required customers. The function then uses the pointer values to follow the sequence of road points,
drawing line segments for each, until the end of the linked list is reached.

334

Chapter 6: Delivery planning

£i11(255,0,0);
ellipse(routex[0],routeY[0],10,10);
}
4 function plotLink(start,finish) A
{
for (i=1;i<pointCount; i++)
{
pointl=roadPoints[i].fromCustomer;
point2=roadPoints[i].toCustomer;
if (((pointl==start)&&(point2==Ffinish)) E:il
| | ((point2==start)&&(pointil==Ffinish)))
{
current = i;
}
}
finished=false;
while (finished==false)
{
x1=roadPoints[current].xpos;
yl=roadPoints[current].ypos;
next=roadPoints[current].pointer;
x2=roadPoints[next].xpos;
y2=roadPoints[next].ypos;
line(x1,y1,x2,y2);
if (roadPoints[next].pointer==-1)
{
finished=true;
}
current=next;
}
}
- J
function scrollbar(scrollPosition)
noStroke();

Go now to the start of the <script> block and add PHP and JavaScript variables, as shown below.

for ($i=0; $i<($locationTotal-1); $i++)

{
$start = $routeCustomerWanted[$i];
$finish = $routeCustomerWanted[$i+1];
$result = RoadPoints::checkStartFinish($start,$finish);
if ($result==0)
{
RoadPoints::createLink($start,$finish,$x[$i],$y[$i],sx[$i+1],%y[$i+1]);
}
)s
$pointCount = RoadPoints::loadRoadPoints();
$roadPointsJSON = json_encode(RoadPoints::$location);
?>
<p>
<script>
var roadPoints = <? echo $roadPointsJSON ?>;
var pointCount =<? echo $pointCount ?>;

var routeX = <? echo json_encode($x) ?>;
var routeY = <? echo json_encode($y) ?>;

335

Web-based programming projects

The RoadPoint data is loaded as a set of PHP objects in JavaScript Object Notation (JSON), then converted

to an equivalent set of JavaScript objects for use in drawing the route map.

PHP JavaScript

array of objects Slocation[] roadPoints|]

attributes Slocation[]-> roadPointID roadPoints[].roadPointID
Slocation[]->fromCustomer roadPoints[].fromCustomer
Slocation[]->toCustomer roadPoints[].toCustomer
Slocation[]->xpos roadPoints[].xpos
Slocation[]->ypos roadPoints[].ypos
Slocation[]->pointer roadPoints[].pointer
Slocation[]->backpointer roadPoints[].backpointer

Save the route.php file and copy it to the server. Run the website and select a slightly different set of
delivery customers. Continue to the route calculation and map display pages. The map should again d

the delivery route, but this time it will be drawn using data loaded from the roadPoints table in the
database.

isplay

\ I Presteigne
Llandrindod Welss\
o "/

>King(on st

Lampeter

Llanwrzyd Wells /

Cardigan/Aberteifi Hay~bn-wn
Newcasfle Emlyn /

Goodwick /o
»'v'(Llandovery/lianymddyfri

ST DAVIDS Llandeilo

B U
JlpS=—— A/be'g.wcnnyn’Y Fenni
= Nirberth Amoaford
25, \ A

Blaenavon |

" Rhymney
Kidwelly NS

New Inn

Lanelii Mountain Ash Pontypool

Pontypridd

Porthcawl dAERDYDD

“HEREFORC

Ro

Go to the PHP MyAdmin website and examine the roadPoints table. Exisiting linked lists will have been

used where a pair of customers were connected during the earlier map test, but additional linked list pairs

should have been added for new connections not on the previous route.

Return to the route.php file. The list of delivery locations near the start of the page was included only for

test purposes and can now be removed. Delete the '‘echo’' command:

for ($i=0; $i<$locationTotal; $i++)
{
$customerIDwanted = $routeCustomerWanted[$i];
(: echo"
point ".$i.": ".$customerIDwanted; REMOVE :)
if ($customerIDwanted==0)

$town[$i]="Newtown"';

336

Chapter 6: Delivery planning

Delete the second 'echo' command below:

else

{

DeliveryCustomer: :loadCustomerByID($customerIDwanted);
$town[$i]=DeliveryCustomer::$customerObj[1]->getTown();
$x[$i]=DeliveryCustomer: :$customerObj[1]->getX();
$y[$i]=DeliveryCustomer: :$customerObj[1]->getY();

}

(echo": ".$town[$i]." (".$x[$i].", ".$y[$i].")"; REMOVE)
}

We can now proceed to add intermediate points to the road connections. Go to the plotLink() function
and add the lines of program code below. These begin by sorting the coordinates for the line segment, so
that x1 is the smaller of the horizontal coordinates, and y1 is the smaller of the vertical coordinates. The
position of the mid point on the line segment is calculated, and a black circle is displayed when the mouse
pointer is close to this point.

finished=false;

while (finished==false)

{
x1l=roadPoints[current].xpos;
yl=roadPoints[current].ypos;
next=roadPoints[current].pointer;
x2=roadPoints[next].xpos;
y2=roadPoints[next].ypos;
line(x1,y1,x2,y2);

x=mouseX;

y=mouseyY;

y=y+tv;

if (int(x1)>int(x2))

temp=x1;

X1=x2;

x2=temp;
}
if (int(yl)>int(y2))
{

temp=y1;

yl=y2;

y2=temp;
}
midX=(int(x1)+int(x2))/2;
midY=(int(y1)+int(y2))/2;
if ((Math.abs(x-midX)<10)&&(Math.abs(y-midY)<10))
{

fill(e);

ellipse(midX,midY,8,8);

£i111(255,0,0);

\ ’ J
if (roadPoints[next].pointer==-1)

{
}

current=next;

finished=true;

337

Web-based programming projects

Save route.php and copy it to the server. Refresh the web page.
When the mouse is moved close to the mid point of any link, a black circle should appear.

Hoylake
Garston~ Rufcorn

Neston

Holyhead/Caergybi
)1 = 97 Frodsham

ST'ASAPH . Fior

Denbigh " CHESTER

MoldVYrﬂWy'!.idgmg

Ruthin/Rhuthun

/ \
- p Wrexham/MWrecsam \
\ . \ Malpas, |

“=Uangolien~_ | Whitchur

Blaenau Festiniog

A

Porthimadod !
2la {
|

Oswtﬁlry

Sheawsbury |

We can now work on the program to add the new point to the roadPoints linked list connecting the pair of
customers.

Return to the plotLink() function and add the lines of program code below. This will call a loadPage()
function if the mouse button is pressed while the pointer is on the black circle.

midX=(int(x1)+int(x2))/2;
midy=(int(y1l)+int(y2))/2;
if ((Math.abs(x-midX)<10)&&(Math.abs(y-midY)<10))
{
fill(e);
ellipse(midX,midY,8,8);
£i11(255,0,0);
if (mouselsPressed==true)
{
loadPage();
}
if (roadPoints[next].pointer==-1)
{
finished=true;
}
current=next;
}

Insert the loadPage() function immediately after the plotLink() function, as show below.

The loadPage() function displays a confirm dialogue box. The user may click 'OK' to add the additional
point to the route, or click 'cancel'. In either case, the route.php page will be reloaded.

338

Chapter 6: Delivery planning

Insert the loadPage() function immediately below the plotLink() function.

if (roadPoints[next].pointer==-1)

finished=true;

}

current=next;

}
}

//' function loadPage() ‘\\
{

choice = confirm('add another point');
if (choice==true)

{
window.location = "addPoint.php?scrollPosition="+scrollPosition
+"¤t="+current+"&next="+next+"&midX="+midX+"&midY="+midY;
}
else

window.location ="route.php?scrollPosition="+scrollPosition;
! J
function scrollbar(scrollPosition)

{

noStroke();
fill(204);
rect(986,0,14,1264);

A few changes to the program will be necessary to ensure that the reloading works correctly. Begin by
adding lines of code to the <head> section of route.php.

<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
<script src="p5.js"></script>
<script src="p5.dom.js"></script>

<?
$scrollPosition=$_REQUEST['scrollPosition'];
if (isset($scrollPosition)==false)

{

}
__ "> J
</head>

$scrollPosition= 0;

Go now to the start of the <script> block. Replace the scrollPosition line:

var routeX = <? echo json_encode($x) ?>;

var routeY = <? echo json_encode($y) ?>;

var routeCustomer = <? echo json_encode($routeCustomerWanted) ?>;
var locationTotal=<? echo $locationTotal ?>;

(: var scrollPosition=<? echo $scrollPosition ?>;)

var vPos;
var ratio;
var scrollSelected = false;

339

Web-based programming projects

These changes were to ensure that the map is displayed in the same scroll position when the page is
reloaded.

Save route.php and copy it to the server. Refresh the page, then move the mouse pointer to the mid point
of a line segment, so that a circular marker appears. Click the mouse on the marker. The confirm dialogue
should appear.

Enter order Plan delivery add another paint

: l’ i “ ca o Cel p
R Sz g RuthinRiuthon 7
e o v

Wrexham/Wrecsam
Nasareth e
'\ Blaenau Ffestinio

1 Iy an
. Llangollen,. Whitchur

I

Porthmadog
b Sno‘wdar:
Pwilheli 7 National Prk

Oswstry

——

~ i

Barmouth -7 D ofiiau

\\‘\Vfwﬁﬁmjmeww

Click 'Cancel' and check that the map is reloaded in the same scroll position, but with the selected point
removed. We can now move on to add a point to the linked list.

Open a blank file and add the lines of program code below. Save the file as addPoint.php and copy it to the
server.

This page will not be visible to the user when the program runs. It is loaded when the 'OK' button is clicked
to add a route point, then begins by collecting information about the line segment which has been
selected: the roadPointID values for the points at each end of the segment, and the map coordinates of
the mid point.

<?
$scrollPosition=$_REQUEST['scrollPosition'];
$current=$_REQUEST['current'];
$next=$_ REQUEST["'next'];
$midX=$_REQUEST['midX'];
$midY=$_REQUEST['midY'];
include('RoadPoints.php');
RoadPoints: :insertPoint($current,$next, $midX, $midyY);
header('Location: route.php?scrollPosition=".$scrollPosition);
?>

The program then runs a method in the RoadPoints class file which will insert the new point into the linked
list. We will add this method now.

Open the RoadPoints.php file and add the insertPoint() method shown below.

340

Chapter 6: Delivery planning

-

public static function insertPoint($current,$next,$midX, $midy)
{
include ('user.inc');
$conn = new mysqli(localhost, $username, $password, $database);
if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
$query="INSERT INTO roadPoints VALUES ('','@','@", "$midX",
"$midY’, '$next', '$current’)";
$result=mysqli_query($conn, $query);
$newRoadPointID = mysqli_insert_id($conn);
$query="UPDATE roadPoints SET pointer='$newRoadPointID’ E:il
WHERE roadPointID = '$current'";
$result=mysqli_query($conn, $query);
$query="UPDATE roadPoints SET backpointer='$newRoadPointID' E:il
WHERE roadPointID = '$next'";
$result=mysqli_query($conn, $query);
mysqli_close($conn);

This method creates a new roadPoint record in the database, with the pointer and backpointer values set
to the roadPointID values at the two ends of the original line segment. The end pointers are then updated
to point to the new intermediate point.

create new record

update pointer ' >
2CKD0intaT

Save the RoadPoints.php file and copy it to the server.

update backpointer

Return to the route.php file and locate the plotLink() function. Add lines of code as shown below to mark
the position of any intermediate points between the delivery customers.

while (finished==false)

{
x1=roadPoints[current].xpos;
yl=roadPoints[current].ypos;
next=roadPoints[current].pointer;
x2=roadPoints[next].xpos;
y2=roadPoints[next].ypos;
line(x1,y1,x2,y2);

£il1(0);

ellipse(x1,y1,8,8);
ellipse(x2,y2,8,8);

x=mouseX;
y=mouseyY;
y=y+tv;

341

Web-based programming projects

Save route.php and copy it to the server. Refresh the page, then click the mouse on the mid point of a line
segment. Select 'OK' in the confirm dialogue box. The page should refresh at the same scroll position with
the additional point now added to the line segment. Repeat the process to insert several more points
between delivery locations.

/‘ s N J
Aberggwyth > LI‘_’P‘_:)'
d l‘\\ NS Ludiow
N (Knighton {
N
Presteigne
Llindrindod Welis_ .
0/ "/ \ -
/ Kington =
\ o
> Lampeter Llanwreyd Wells { /
Cardigan/Abertaifi ' <\ i
~ LOn-W: —C -
{ o\ sy 2 HEREFORC
Newcasfle Emlyn / P
Goodwick . % P
o Ulandovery/dsnymddyfri ~Talgarth)
/ /
. Ro
ST DAVIDS __~Llandeilo \
- o | [’
plem \ : l'\’tlxrgavtmv,/Y Fenni
peml > Nirberth Ammhnford . 2 ! /
fCoas g \ - -
3 b—RAymney Blaenavon
Kidwelly
i) / New Inn
o 11 / { Pontypool
Tenby/Din Llanelii Mountain; "Ash {
bercarn /
SWANSEA/ABERTAWE
Maesteg Pontypridd > YL /’\

Go to the PHP MyAdmin website and examine the roadPoints table. Records will have been added for the
intermediate points between delivery locations, and are connected back to the original records by means of
the forwards and backwards pointers, as in this example. You may need to set the database table to
display more than the default number of rows of data.

roadPointID pointer backpointer
12 0 0 362 49 < 11
13 19 4 362 49 22 -1
(14 0 0 461 647 -1 4\ 22
15 13 6 229 1081 16 -1
16 0 0 791 1209 -1 15
17 6 0 791 1209 18 -1
18 0 0 738 585 -1 17
19 0 19 738 585 20 -1
20 0 0 362 49 < 19
21 0 0 410 707 2 J 1
> 22 0 0 412 348 14 13
23 0 0 294 924 4 3

We will now allow the user to move the inserted points so that they lie accurately on the road network.
Return to the route.php file and insert a movePoint() function underneath the draw() function. Add a line
of program code to draw() to call this function, as shown below.

342

Chapter 6: Delivery planning

if (scrollPosition>6490)
{

scrollPosition=640;

}
}
}
drawRoute();
(movePoint();)
}
\

//>function movePoint ()

{
X=mousexX;
if (x<=960)
{
y=mouseY;
y=y+tv;

if (mouseIsPressed==true)
if (dragging==false)
dragging=true;

}

if (mouselIsPressed==false)

if (dragging==true)

{
dragging=false;

}
for (i=1;i<=pointCount; i++)
{
xpos=roadPoints[i].xpos;
ypos=roadPoints[i].ypos;
if ((Math.abs(x-xpos)<10)&&(Math.abs(y-ypos)<10))

if ((roadPoints[i].pointer>-1)&&(roadPoints[i].backpointer>-1))

{
if (dragging==true)

X35
Y5

roadPoints[i].xpos
roadPoints[i].ypos
selected=i;

}
\J /
function drawRoute()

{

for (var i=0; i<(locationTotal-1); i++)

{

The function begins by finding the x and y coordinates of the mouse. A variable 'dragging' is set to 'true’ if
the mouse is being moved with the button held down. Each of the intermediate route points is then

343

Web-based programming projects

checked in turn. If the mouse lies close to a point and is being dragged, the point moves to the current
mouse position. The roadPointID of this point is recorded as the variable 'selected'.

The two additional variables dragging and selected should be defined as global, so that they can be used by
several functions. Insert these variables near the start of the <script> block as shown below.

var vPos;
var ratio;
var scrollSelected = false;

var dragging=false;
var selected=0;
function preload()

{
}

imgl=1loadImage("map.png");

Save the route.php file and copy it to the server. Refresh the page, then test the movePoint() function by
holding down the mouse on an intermediate route point and dragging the mouse to another position. The
point should follow. Check that the delivery locations marked by red circles cannot be moved.

HEREFORC
Newcasfle Emiyn Ve

Goodwick / ;
OO Uandovery/lianymddyfri ~Talgarch

” # 7
__~Llindeilo Brécon Beacons
% 5 Nitional Park

\ Ammanford

Ro
BT DAVIDS \

N |
Abergavenny/Y Fenni
~r

peml Nirberth \
3s. 3\

A Riymney Blaenavon '

Kidwelly

New Inn

Tenby . lanelli / i) Pontypool
Tenby/Dinth-Y-Pysgod Lians¥i y Mountain|Ash ;

Rhossili

Porthcawl R AERDYDD

Barry

|

The next step is to allow the new point location to be updated in the database table, so that the point
remains in the required position when the page is reloaded.

Return to the movePoint() function in the route.php file. Add lines of program code as shown below. If
the mouse button is released while a route point is being dragged, a new function loadPage2() will be
called. This will display a confirm dialogue box, and the user must click 'OK' before changes are applied to
the database record.

if (mouselsPressed==false)

{
if (dragging==true)

dragging=false;
if (selected>9)
loadPage2();
¥
}

for (i=1;i<=pointCount; i++)

344

Chapter 6: Delivery planning

Add the loadPage2() function immadiately below the movePoint() function.

function movePoint()
{
}
(" function loadPage2()
{
choice = confirm('change position of point');
if (choice==true)
{
window.location = "movePoint.php?scrollPosition="+scrollPosition+
"&selected="+selected+"&x="+int(x)+"&y="+int(y);
}
else
window.location ="route.php?scrollPosition="+scrollPosition;
(L
function drawRoute()
{
for (var i=0; i<(locationTotal-1); i++)
{

Save the route.php file and copy it to the server.

If the user confirms to save the new position of the route point, another page will be loaded. We will
create this next. Open a blank file and add the lines of program code below. Save the file as

movePoint.php and copy it to the server.

<?

$scrollPosition=$_REQUEST['scrollPosition'];

$selected=$_ REQUEST['selected’];

$x=$ REQUEST['x'];

$y=$ REQUEST['y'];

include('RoadPoints.php');

RoadPoints: :movePoint($selected, $x,%y);

header('Location: route.php?scrollPosition="'.$scrollPosition);
?>

The movePoint.php page will not be visible to the user when the program is running. The page collects the
routePointID of the moved point, along with the x and y coordinates of its new position. This information is
passed to a movePoint() method in the RoadPoints class, which will update the corresponding database

record.

Go to the RoadPoints.php file and add the movePoint() method as shown below. Save the

RoadPoints.php file and copy it to the server.

/,7 public static function movePoint($selected, $x,%$y)
{

include ('user.inc');

$conn = new mysqli(localhost, $username, $password, $database);

if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

$query="UPDATE roadPoints SET xpos='$x"', ypos='$y’ E:il
WHERE roadPointID="'$selected'";

$result=mysqli_query($conn, $query);

mysqli_close($conn);

J

345

Web-based programming projects

Return to route.php. To avoid a conflict occurring between the functions for adding and moving a point,
we will make a slight modification to the plotLink() function. Change the line shown below.

if ((Math.abs(x-midX)<10)&&(Math.abs(y-midY)<10))

{
fill(e);
ellipse(midX,midv,8,8);
£i111(255,0,0);

(: if ((mouselsPressed==true)&&(dragging==false)) :)
loadPage();
}

Save route.php and copy it to the server. Refresh the page. It should now be possible to a add new
intermediate point between any pair of existing points, then drag the new point to its correct position on
the map. The position will then be updated in the database table. This can be repeated as necessary to
show the route with sufficient accuracy. The route mileage will be calculated according to the sequence of
links shown on the map.

Holyhead/Caergybi

. Llangefni

Pwillhesi

Penmaenmawr

rrrrrrrrrr

TST'ASAPH

Denbigh

Neston

N Flint

Mold'Yr, Wyddgrug

RuthinRhuthn

7 CHESTER

Wrexham/Wrecsam

= Liangolien..

Frodsham

Malpas, “'

Whitchur

|
Oswestry

Sheewsbury |

If at any time you wish to clear the intermediate points added between customers and begin again with a
clear map, this can be done by going to the PHP database and deleting all data from the roadPoints table.
The program will then automatically recreate direct links between each pair of customers.

This completes the map display. We will now add a web page to display the sequence of delivery locations
and distances. Before creating the new page, return to the route.php file and add lines of program code to
display a button with the caption 'Display delivery addresses', as shown below. Save the route.php file and
copy it to the server.

RoadPoints::createLink($start,$finish,$x[$i],$y[$i],sx[$i+1],%y[$i+1]);
}

}
$pointCount = RoadPoints::loadRoadPoints();

$roadPointsJSON = json_encode(RoadPoints::$location);
?>
<p>

<form method=post action="deliverylList.php'>
<input type=submit value='Display delivery addresses'>
</form>

<script>

346

Chapter 6: Delivery planning

Refresh the page and check that the button is displayed.

Enter order Plan delivery

| Display delivery addresses |

We will now create the deliveryList page. Open a blank file and add the lines of program code below.

<?
session_start();
?>
<html>
<head>
<title> Delivery route </title>
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />
</head>
<body>
<?
include('staffMenu.php');
?>
<p>
<form method=post action='route.php'>
<input type=submit value='Display delivery map'>
</form>
<table class=stock cellspacing=10px>
<tr class=stock>
<th class=stock>CustomerID</th>
<th class=stock>Company</th>
<th class=stock>Town</th>
<th class=stock>Address</th>
<th class=stock>Miles</th>
<th class=stock>Journey total</th>
</tr>
</table>
</body>
</html>

Save the file as deliveryList.php and copy it to the server.

Run the website, select a series of orders for delivery and continue to the delivery map. Click the 'Display
delivery addresses' button. A new page should open with a series of table headings displayed. This will list
the customers in the order of delivery, along with the mileage between delivery points.

Enter order Plan delivery Add customer

| Display delivery map |

‘ CustomerlD | Ccmpany| Town | Address | Miles | Journey total

Return to the deliveryList.php file and add the block of PHP code shown below. This accesses the
deliveryCustomer table in the database and obtains the company names and addresses for each of the
delivery points. These will be listed in the order produced by the Nearest Neighbour algorithm, and may
begin and end at a location other than the Newtown depot.

347

Web-based programming projects

<body>
<?
include('staffMenu.php');

-

include('DeliveryCustomer.php');
include('RoadPoints.php');
RoadPoints::loadRoadPoints();
$custID = $_SESSION["routeCustomerWanted"];
$locationTotal=count($custID);
for ($i=0; $i<$locationTotal; $i++)
{

$customerIDwanted = $custID[$i];

if ($customerIDwanted==0)

$town[$i]="Newtown";

}
{

else

DeliveryCustomer: :loadCustomerByID($customerIDwanted);
$town[$i]=DeliveryCustomer: :$customerObj[1]->getTown();
$companyName[$i]=DeliveryCustomer: :$customerObj[1]->getCompanyName();
$address[$i]=DeliveryCustomer: :$customerObj[1]->getAddress();

} Y,

?>
<p>
<form method=post action='route.php'>
<input type=submit value='Display delivery map'>
</form>
<table class=stock cellspacing=10px>
<tr class=stock>
<th class=stock>CustomerID</th>
<th class=stock>Company</th>

The delivery sequence which we will display on the web page should represent the actual delivery journey
beginning and ending at the Newtown depot. Some reorganisation is therefore necessary:

348

The sequence produced by the algorithm will duplicate a location at both the start and end of the
list: in this case Swansea. The entry at the end of the list is first removed.

A new list is created, beginning with the entry for Newtown and adding any entries which follow
this: in this case Cardiff.

The first part of the original list is then added, copying the entries up to and including Newtown.

5 - Swansea 5 -Swansea 0 - Newtown
13 - Tenby 13 - Tenby / 6 - Cardiff
9 - New Quay 9 - New Quay

5 - Swansea
4 - Aberystwyth 4 - Aberystwyth

ysEvy vy 13 - Tenby

14 - Dolgellau 14 - Dolgellau

9 - New Quay
15 - Bala 15 - Bala —

4 - Aberystwyth
0 - Newtown 0 - Newtown

14 - Dolgellau
6 - Cardiff

15 - Bala

Chapter 6: Delivery planning

Return to the deliveryList.php file and add the block of program code shown below.

<th class=stock>Address</th>

<th class=stock>Miles</th>

<th class=stock>Journey total</th>
</tr>

/ <? \

$locationTotal--;
for ($i=0; $i<$locationTotal;$i++)

if ($custID[$i]==0)

t $start=9%i;
}
}
>)
</table>
</body>

The purpose of this section of program is to determine the position in the delivery sequence of the
Newtown depot (customer ID = 0). This information is then used to split the original list at the correct
point.

Continue by adding the program code shown below. This will begin to display the last section of the
original delivery list, starting with an entry for the Newtown depot.

for ($i=0; $i<$locationTotal;$i++)

{
if ($custID[$i]==0)

{
}

$start=9%i;

}

$total=0;
for ($i=$start; $i<$locationTotal; $i++)
{

Ve

echo"<tr class=stock>";

echo"<td class=stock>$custID[$i]";

if ($custID[$i]==0)

{
echo"<td class=stock>Start from Newtown Depot</td><td class=stock> E:il
</td><td class=stock><td class=stock>0@</td><td class=stock>0</td>";

}

echo"</tr>";

- } J

?>

</table>
</body>
</html>

Continue by adding the program code shown below. This will display the last section of the original
delivery list, from Newtown onwards. After adding each company name, town and address to the table,
the program will call a method in the RoadPoints class to calculate the mileage from the previous delivery

349

Web-based programming projects

point. To complete the route, the program adds the first group of delivery locations from the original list,
up to and including the Newtown depot where the journey ends. Save the deliveryList.php file and copy it
to the server.

if ($custID[$i]==0)

{
echo"<td class=stock>Start from Newtown Depot</td><td class=stock> E:il
</td><td class=stock><td class=stock>0</td><td class=stock>0</td>";
}
/r else \\
{
echo"<td class=stock>$companyName[$i] </td>";
echo"<td class=stock>$town[$i] </td>";
echo"<td class=stock>$address[$i] </td>";
$previous=$i-1;
$distance = RoadPoints::
calculateDistance($custID[$previous],$custID[$i]);
echo"<td class=stock>$distance</td>";
$total = $total+$distance;
echo"<td class=stock>$total</td>";
}

echo"</tr>";

for ($i=0; $i<= $start;$i++)
{
echo"<tr class=stock>";
echo"<td class=stock>$custID[$i] </td>";
if ($custID[$i]==0)
{
echo"<td class=stock>Finish at Newtown Depot</td> E:il
<td class=stock><td class=stock></td>";
$previous=$i-1;
if ($previous<®)
$previous=$locationTotal-1;
$distance = RoadPoints::
calculateDistance($custID[$previous],$custID[$i]);
echo"<td class=stock>$distance</td>";
$total = $total+$distance;
echo"<td class=stock>$total</td>";

else

echo"<td class=stock>$companyName[$i] </td>";
echo"<td class=stock>$town[$i] </td>";
echo"<td class=stock>$address[$i] </td>";
if ($i==0)

$previous=$locationTotal-1;
else

$previous=$i-1;
$distance = RoadPoints::

calculateDistance($custID[$previous],$custID[$i]);

echo"<td class=stock>$distance</td>";
$total = $total+$distance;
echo"<td class=stock>$total</td>";

- ; J

echo"</tr>";

}
?>
</table>

350

Chapter 6: Delivery planning

We just need to add a method to the RoadPoints class to calculate the distances between delivery points.
Re-open RoadPoints.php and add the method shown below. This finds the starting point for the linked list
of points marking the route between the two delivery points. Each pair of points along the linked list are
then considered in turn, and the distance between them in screen pixels is calculated using Pythagoras'
theorem. When all points have been processed, the total distance is converted from screen pixels to miles
according to the scale of the map on the screen.

/,» public static function calculateDistance($fromCustomer,$toCustomer))
{
$result=0;
$pointCount=RoadPoints: :loadRoadPoints();
for ($i=1;%$i<=$pointCount;$i++)
{
$a = RoadPoints::$location[$i]->fromCustomer;
$b = RoadPoints::$location[$i]->toCustomer;
if ((($fromCustomer==$a)&&($toCustomer==$b))]| | E:il
(($fromCustomer==$b)&&($toCustomer==%$a)))
{
$current=9%$i;
}
}
$finished=false;
$total=0;
while($finished==false)
{
$xCurrent=intval (RoadPoints::$location[$current]->xpos);
$yCurrent=intval (RoadPoints::$location[$current]->ypos);
$next=RoadPoints::$location[$current]->pointer;
$xNext=intval(RoadPoints::$location[$next]->xpos);
$yNext=intval(RoadPoints::$location[$next]->ypos);
$xTerm = $xCurrent-$xNext;
$yTerm = $yCurrent-$yNext;
$distance = sqrt($xTerm*$xTerm + $yTerm*$yTerm);
$total = $total + $distance;
if (RoadPoints::$location[$next]->pointer == -1)
$finished=true;
$current=$next;
$count++;
}
$total = $total / 8.3;
return intval($total);
return $total;
NG /
}
?>

Save the RoadPoints.php file and copy it to the server. Refresh the deliveryList page and check that the
sequence of customers along the delivery route is displayed correctly, as in this example.

CustomeriD Company Town Address Miles | Journey total
0 Start from Newtown Depot] 0

14 Cader Idris Climbing Shop Dolgellau Bridge Street 36 36

15 Lakeside Watersports Bala Tegid Avenue 18 54

7 Snowdonia Mountainsport Betws-y-Coed | Ffordd Gethin 25 79

19 Anglesey coast and mountain centre | Amiwch Heol y Bont 35 114

4 Cambrian Outdoors Aberystwyth | Marine Terrace |94 208

9 Sailing Centre New Quay Harbour Road |19 227

13 Pembrokeshire Watersports Centre | Tenby Harbour Terrace | 47 274

6 Bay Watersports Cardiff Marine Drive 85 359

0 Finish at Newtown Depot 85 444 351

Web-based programming projects

This completes the program output. However, one slight problem remains. When we set up the Nearest
Neighbour Algorithm calculation, we used straight line distances between pairs of delivery points rather
than the more accurate linked list distances following the road network. The accuracy of the program can
be improved by using the linked list distances.

" HEREFORC.

Goodwick

ST DAVIDS

Warren

" HEREFORC.

ST DAVIDS

Reopen the planRoute.php file. Locate the block of PHP code which creates the table of distances between
delivery locations. Remove this block, so that it can be replaced by a new table in which distances are
obtained from the linked lists of points.

$count++;

}
}

echo"<p>";

echo"<table class=stock>";
echo"<tr>";

echo"<td class=stock>";
for($i=0;$i<=$routeCount;$i++)

{
}

for($i=0;$i<=$routeCount;$i++)

{

REMOVE <TABLE> BLOCK

echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";

echo"<tr>";

echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";

for ($j=0;%$j<=$routeCount;$j++)

{
$Xdifference = $routeX[$i]-$routeX[$j];
$Ydifference = $routeY[$i]-$routeY[$i];
$distance = $Xdifference*$xXdifference+$Ydifference*$ydifference;
$distance = sqrt($distance);
echo"<td class=stock>".number_format($distance,9);
$1link[$i][$j]=%distance;

}

}

echo"</table>";

for ($start=0;$start<=$routeCount;$start++)

352

Chapter 6: Delivery planning

Replace the original table with the block of code shown below. This begins by loading the set of RoadPoint
objects from the database table. Loops again access each element of the table which represent
connections between pairs of delivery locations. A check is made to see whether a linked list of points has
been created for the current connection; if so, this is used to calculate the distance. If not, a straight line
distance is calculated by Pythagoras' formula as in the original table.

$count++;
}
}
echo"<p>";
4 include('RoadPoints.php'); A
$pointCount=RoadPoints: :loadRoadPoints();
echo"<table class=stock>";
echo"<tr>";
echo"<td class=stock>";
for($i=0;$i<=$routeCount;$i++)
{
echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";
}
for($i=0;$i<=$routeCount;$i++)
{
echo"<tr>";
echo"<td class=stock>".$routeCustomerID[$i]." ".$routeTown[$i]."</td>";
for ($j=0;%$j<=$routeCount;$j++)
{
$a = $routeCustomerID[$i];
$b = $routeCustomerID[$]];
$found=false;
for ($n=1;%$n<=$pointCount;$n++)
{
$fromCustomer = RoadPoints::$location[$n]->fromCustomer;
$toCustomer = RoadPoints::$location[$n]->toCustomer;
if ((($fromCustomer==$a)&&($toCustomer==$b))| | [:il
(($fromCustomer==$b)&&($toCustomer==%$a)))
$found=true;
}
if (($a==0)8&($b==0))
$found=false;
if ($found==true)
{
$distance = RoadPoints::calculateDistance($a,$b);
}
else
{
$Xdifference = $routeX[$i]-$routeX[$j];
$Ydifference = $routeY[$i]-$routeY[$i];
$distance = $Xdifference*$Xdifference+$Ydifference*$Ydifference;
$distance = sqrt($distance);
$distance = $distance/ 8.3;
}
echo"<td class=stock>".number_format($distance,9);
$link[$i][$j]=%distance;
}
}
_ echo"</table>";)
for ($start=0;$start<=$routeCount;$start++)

353

Web-based programming projects

Save planRoute.php and copy it to the server. Run the web site and select a set of orders for delivery.
Continue to the planRoute page, where the updated table of distances will be displayed. The distances are
now shown in miles, rather than screen pixels, and have been converted according to the scale of the map
image on the screen.

0 Newtown | & Cardiff | 14 Dolgellau | 16 Pwllheli| 9 New Quay | 5 Swansea | 19 Amlwch | 15 Bala | 32 Barry

0 Newtown [0 86 34 63 54 79 49 53 78

6 Cardiff 86 0 a7 M7 114 41 149 106 8

14 Dolgellau | 34 97 0 35 44 78 B84 18 99

16 Pwllheli &8 117 35 0 81 91 41 54 149

9 New Quay | 54 114 44 81 0 46 110 61 85

5 Swansea (79 41 78 91 46 0 127 92 38

19 Amlwch |99 149 64 4 110 127 0 62 150

15 Bala 33 106 18 24 651 92 62 0 109

32 Barry 78 8 99 149 85 38 150 109]

current = 0 - Newtown - REMAINING: Cardifi(86) Dolgellau(34) Pwilheli(68) New Quay(54) Swansea(79) Amiwch(99) Bala(53) Barry(78)
current = 14 - Dolgellau - REMAINING: Cardiff(97) Pwliheli(35) New Quay(44) Swansea(78) Amlwch(64) Bala(18) Barry(99)

current = 15 - Bala - REMAINING: Cardifi{106) Pwllheli{54) New Quay(61) Swansea(92) Amiwch(62) Barry(109)

current = 16 - Pwliheli - REMAINING: Gardiff(117) New Quay(81) Swansea(91) Amiwch(41) Barry(149)

current = 19 - Amiweh - REMAINING: Cardiff(149) New Quay(110) Swansea(127) Barry(150)

current = @ - New Quay - REMAINING: Cardifi(114) Swansea(46) Barry(85)

current = 5 - Swansea - REMAINING: Cardifi(41) Barry(28)

current = 32 - Barry - REMAINING: Cardiff(8)

current = 6 - Cardiff

Return distance to Newtown = 86

TOTAL DISTANCE = 435

Click the 'continue' button and the route map should be displayed as before.

Further development

The delivery planning system developed in this example project contains the basic elements required to
operate the system, but further editing and updating facilities could be added. For example, there might be
an option to upload maps of other areas, with the user entering information about the map scale so that
distances could be calculated.

Other route planning systems might be developed, for example: for home parcel deliveries, or for an
engineer who has to visit a number of premises to check gas or electrical installations.

354

Chapter 6: Delivery planning

Summary of the object structures
Staff

Staff

- staffID: integer
A Staff object contains the staffID which is set as an auto- - userName: itring

number, along with the user name and password. The - password: string
public method checkPassword() calls the private method

checkUser() to examine each Staff object in turn, then + constructor(userName, password)

returns an overall true/false result depending on whether | - checkUser(userName, password): boolean
valid log-in details were found. + checkPassword(userName, password): boolean

OutdoorEquipment

Objects in this class represent the products distributed by the company. Attributes include: the stockcode
and item title, a written description and picture, and the price. Methods are provided to add new stock
records, load all stock items for display, or select a particular stock item by its ID number. Attributes are
accessed by means of a set of get() methods.

DeliveryCustomer

Objects represent the customers who receive deliveries from the company. In addition to name and
address, the attributes include the map coordinates for the delivery location. Methods are provided to add
new customers, load all customers for listing on a page, or to select a particular customer by ID number.
Attributes are accessed by means of a set of get() methods.

OutdoorEquipmentOrder

Objects represent orders received from customers. Attributes identify the customer by ID number, and
provide information on whether the order is awaiting delivery or has been delivered. Methods are
provided to add an order, load all order for display on screen, and to record that an order has been
delivered. Attributes are accessed by means of a set of get() methods.

EquipmentOrderitem

Objects represent individual item entries on a customer order. Attributes identify the order and product by
their ID numbers, and specify the quantity of the product ordered. Methods are provided to add an item to
an order and to load all order items for a particular order, identified by its orderID number. Attributes are
accessed by means of a set of get() methods.

RoadPoint

Objects represent points along the delivery route. Attributes specify the map coordinates of the point and
indicate whether it represents a customer location or an intermediate point on the connecting road
network. Pointers create linked lists of road points between delivery points. A method is provided to check
whether a linked list of points already exists between two customers, and a method can create a simple
straight line connection where none exists. Methods load all road points, and can insert a new point mid-
way between two existing road points. The movePoint() method allows a point to be dragged by mouse
pointer to a new location on the map. The calculateDistance() method finds the distance in miles between
two specified road points.

355

Web-based programming projects

DeliveryCustomer

+ customerObyj: array of DeliveryCustomer objects
- customerlD: integer

- companyName: string
- address: string

- town: string

- X integer

-y integer

+ constructor{customerlD, companyName, ... X, y)

+ getCustomerID(): integer

+ getY(): string

+ addCustomer{customerlD, companyName, ... X
+ JoadCustomers(): array of DeliveryCustomer objects
+ loadCustomerByID(customerID): DeliveryCustomer object

0,2

1.n

RoadPaint

+ location: array of RoadPoint objects
+ roadPointID: integer

+ fromCustomer: integer

+ toCustomer: integer

+ xpos: integer

+ ypos: integer

+ pointer; integer

+ backpointer: integer

+ constructor(roadPointlD, ... backpointer)
+ checkStartFinish(fromCustomer, toCustomer)
+ createLink(fromCustomer, toCustomer, startXpos, startYpos,

finishXpos, finishYpos)

+ JoadRoadPuoints(): array of RoadPoint objects

+ insertPoint(currentRoadPgintID, nextRoadPointlD, midXpos, midYpos
+ movePoint(roadPointID, newXpos, newYpos

+ calculateDistance(fromCustomer, toCustomer): integer

- private
+ public

underlined static

356

OutdoorEquipmentOrder

+ orders: array of OutdoorEquipmentOrder objects
- orderlD: integer

- customerlID: integer
- orderDate: string

- delivered: string

- deliveryDate: string

+ constructor(description|D, ... imageName)

+ getOrderlD(): integer

+ getDeliveryDate(): string

+ addOrder(customerlD, orderDate. delivered. deliveryDate): orderlD
+ loadOrders(): array of OutdoorEquipmentOrder abjects
+ recordDelivery(delivered, deliveryDate, order|D)

1.n

EquipmentOrderitem

+ items: array of EquipmentOrderltem objects
- orderltemID: integer

- orderlD: integer

- stockcode: string

- guantity: integer

+ constructor(orderitemID, ... quantity)

+ getOrderitemID(): integer
+ getOrderID(): integer

+ getStockcode(): string

+ getQuantity(): string

+ addltem(orderID,stockcode quantity): orderitemID
+ loaditemsByOrderlD(order|D): array of EquipmentQOrderltem object

Q.n

1

OutdoorEquipment

+ product: array of OutdoorEquipment
- productiD: integer

- stockCode: string

- category: string

- title: string

- description: string

- picture: string

- price: decimal

+ constructor(productlD, stockCode, category, title, description, picture, price)

+ getProductID(): integer
+ getProductID: string

+ getlmaéel(.)‘: .string

+ getPrice(): real

+ saveRecord(stockCode, category. title, description, picture, price
+ loadStockltems(): array of QutdoorEquipment objects
+ loadByStockCode(productID): OutdoorEquipment object

