
 Chapter 7: Saving data on disc 181

7 Saving data on disc

Most programs require data to be stored on disc, so that it can be reloaded when the program is

re-run at a later date.

The simplest way in which Java can store data is as a text file. We will begin by creating a program to

save a text file containing data for an employee in a company: the employee's name, department,

age and salary.

Set up a new project in the standard way:

Close all projects, then set up a New Project. Give this the name staffRecord, and ensure that the

Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the staffRecord project, and select New /

JFrame Form. Give the Class Name as staffRecord, and the Package as staffRecordPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form editing screen.

Add labels and text fields to the form to create an input screen for the employee data. Rename the

text fields as: txtName, txtDepartment, txtAge, and txtSalary:

182 Java Programming for A-level Computer Science

We will add three buttons to the form to test the data saving procedure:

 A button to save the employee data. Give this the caption "Save on disc" and the name

btnSave.

 A button to clear the four text fields. Give this the caption "Clear" and the name btnClear.

 A button to reload the employee data from the disc file and re-display it in the text fields.

Give this the caption "Reload from disc" and the name btnReload.

Use the Source tab to change to the program code page. A series of Java modules will be needed to

save and load the data, and to deal with any file errors which might occur. Add these modules at the

start of the program.

package staffRecordPackage;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import javax.swing.JOptionPane;

public class staffRecord extends javax.swing.JFrame {

 public staffRecord() {
 initComponents();
 }

We must now give a name for the data file which will be created on disc. Add a line of code to do

this. We have created our own file type extension (.DAT) to identify a data file.

package staffRecordPackage;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import javax.swing.J optionPane;

public class staffRecord extends javax.swing.JFrame {

 static String fileLocation="staff.dat";

 public staffRecord() {
 initComponents();
 }

Please note that if just a file name is given, such as:
 "staff.dat"
then the file will be stored in the root of the current project folder, staffRecord. Alternatively, a full
pathway can be given to a location where you want the file to be stored, for example:
 "C:\program data\staff.dat"

 Chapter 7: Saving data on disc 183

We will now work on the save procedure for the data file. Use the Design tab to return to the form
view, then double click the "Save on disc" button to create a method. Add lines of code to produce
a TRY … CATCH block. This will display a message box if an error occurs during file saving.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 try
 {

 }
 catch (IOException e)
 {
 JOptionPane.showMessageDialog(staffRecord.this, "File error");
 }

 }

A red error symbol will appear alongside the program listing. Ignore this for the time being; we will

be adding code shortly which will solve the problem.

The next step is to collect the data items from the text fields and store these temporarily as

variables.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {
 try
 {

 String name=txtName.getText();
 String department=txtDepartment.getText();
 String age=txtAge.getText();
 String salary=txtSalary.getText();

 }
 catch (IOException e)

We are now going to combine the data items to create a record. We will separate the individual data
fields with commas, for example:

 Dafydd Jones, Engineering, 23, 21500

To do this, set up the string variable s, then add each of the data items in turn to build up the record:

 try
 {
 String name=txtName.getText();
 String department=txtDepartment.getText();
 String age=txtAge.getText();
 String salary=txtSalary.getText();

 String s = name + ",";
 s += department + ",";
 s += age + ",";
 s += salary;

 }
 catch (IOException e)
 {

184 Java Programming for A-level Computer Science

The final step is to save the record on disc. Add lines of code which will open a file with the name

and location which we specified earlier, save the record into the file, then close the file.

 String s = name+",";
 s += department+",";
 s += age+",";
 s += salary;

 FileWriter w = new FileWriter(fileLocation);
 BufferedWriter writer = new BufferedWriter(w);
 writer.write(s);
 writer.close();

 }
 catch (IOException e)
 {

Run the program, enter test data for an employee, then click the "Save on disc" button.

To check that the data has been saved correctly, use Windows Explorer to locate the staff.dat file in

the staffRecord folder:

 Chapter 7: Saving data on disc 185

Use a text editor such as Notepad or Wordpad to open the staff.dat file. The record should be

displayed, with the individual data fields separated by commas:

Close the program window and return to the NetBeans editing screen. Use the Design tab to display

the form view, then double click the "Clear" button to create a method. Add lines of code to clear

the entries in the four text fields:

 private void btnClearActionPerformed(java.awt.event.ActionEvent evt) {

 txtName.setText("");
 txtDepartment.setText("");
 txtAge.setText("");
 txtSalary.setText("");

 }

Select the Design tab again to return to the form view, then double click the "Reload from disc"

button to create a method. Begin by producing a TRY … CATCH block to display an error message

when required.

 private void btnReloadActionPerformed(java.awt.event.ActionEvent evt) {

 try
 {

 }
 catc h (IOException e)
 {
 JOptionPane.showMessageDialog(staffRecord.this, "File error");
 }

 }

When the "Reload" button is clicked, the data file must first be opened, the record read into the
program, then the file closed. Add lines of code to do this:

 try
 {

 FileReader r = new FileReader(fileLocation);
 BufferedReader reader = new BufferedReader(r);
 String s=reader.readLine();
 reader.close();

 }
 catch (IOException e)

186 Java Programming for A-level Computer Science

The next step is to split the record into the separate fields, then the data items displayed in the text
fields on the form. We use the split command in Java:

 private void btnReloadActionPerformed(java.awt.event.ActionEvent evt) {
 try
 {
 FileReader r = new FileReader(fileLocation);
 BufferedReader reader = new BufferedReader(r);
 String s=reader.readLine();
 reader.close();

 String dataItem[] = s.split(",");
 txtName.setText(dataItem[0]);
 txtDepartment.setText(dataItem[1]);
 txtAge.setText(dataItem[2]);
 txtSalary.setText(dataItem[3]);

 }
 catch (IOException e)
 {

We tell the split command which character should be used to separate the string s into individual

fields. We have used a comma:

 s.split(",")

The command will then create an array containing each of the individual data items:

 dataItem[0] will contain the employee name

 dataItem[1] will contain their department

 dataItem[2] will contain their age

 dataItem[3] will contain their salary

This data can then be displayed in the text fields on the form.

Run the program. Enter and save a staff record. Click the "Clear" button, then check that the data

can be reloaded correctly:

 Chapter 7: Saving data on disc 187

In the next program, we will see how more than one record can be added to a text file, then re-

displayed on screen.

An airport requires a program which will input information about departing flights, then

display this information for passengers in a data table.

For each flight, the information required is:

 Flight ID

 Destination

 Airline

 Departure time

We will use similar methods to the previous program for storing and reloading the flight departure

records.

Set up a new project in the standard way. Close all projects, then set up a New Project. Give this

the name airlineFlights, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the airlineFlights project, and select New /

JFrame Form. Give the Class Name as airlineFlights,and the Package as airlineFlightsPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Set up the input form by adding labels, text fields and buttons as shown in the illustration on the

next page. Rename the text fields as:

txtFlightID

txtDestination

txtAirline

txtDepartureTime

Rename the buttons and add captions:

btnDisplayFlights "Display flights"

btnSave "Save record"

btnCancel "Cancel"

188 Java Programming for A-level Computer Science

Use the Source tab to open the program code screen.

Go to the start of the program listing and add Java modules for saving data and handling file errors.

We will also specify a file name "flights.dat" for saving the flight records.

package airlineFlightsPackage;

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import javax.swing.JOptionPane;

public class airlineFlights extends javax.swing.JFrame {

 static String fileLocation="fl ights.dat";

 public airlineFlights() {
 initComponents();
 }

It will be useful to produce a method to clear the text fields. Add this below airlineFlights():

 public airlineFlights() {
 initComponents();
 }

 private void clear()
 {
 txtFlightID.setText("");
 txtDestination.setText("");
 txtAirline.setText("");
 txtDepartureTime.setText("");
 }

 Chapter 7: Saving data on disc 189

Use the Design tab to return to the form design screen.

Double click the "Cancel" button to create a method. Add a line of code to call the clear() method

which we have just written:

 private void btnCancelActionPerformed(java.awt.event.ActionEvent evt) {

 clear();

 }

Run the program. Type some data into the text fields, then check that this can be cleared by clicking

the "Cancel" button.

Close the program window and return to the editing screen. Use the Design tab to move to the

form design page, then double click the "Save record" button to create a method.

We will begin by adding a TRY … CATCH block to handle any file errors.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 try

 {

 }

 catch (IOException e)

 {

 JOptionPane.showMessageDialog(airlineFlights.this, "File error");

 }

 }

The next step is to collect the data values for the text fields and combine them into a record,

separated by commas:

 try

 {

 String flightID=txtFlightID.getText();

 String destination=txtDestination.getText();

 String airline=txtAirline.getText();

 Strin g departureTime=txtDepartureTime.getText();

 String s = flightID + ",";

 s += destination + ",";

 s += airline + ",";

 s += departureTime;

 }

 catch (IOException e)

 {

190 Java Programming for A-level Computer Science

The record can now be saved into the flights.dat file. If all is well, we can display a message that the

record has been saved and call the clear() method to leave the text fields empty, ready for entry of

the next record.

 String s = flightID + ",";

 s += destination + ",";

 s += airline + ",";

 s += departureTime;

 FileWriter w = new FileWriter(fileLocation,true);

 BufferedWriter writer = new B ufferedWriter(w);

 writer.write(s);

 writer.newLine();

 writer.close();

 JOptionPane.showMessageDialog(airlineFlights.this, "Record saved");

 clear();

 }

 catch (IOException e)

 {

Notice that we have made a small change to the program code, compared to the staff record

program earlier in this chapter. In that program, we used a line:

 FileWriter w = new FileWriter(fileLocation);

to instruct the computer to create a new file, ready to save records. However, in this case we only

want a new file to be created for the first record, then further records are to be added to the

existing file. This can be done by adding another parameter "true" to the command:

 FileWriter w = new FileWriter(fileLocation, true);

Run the program. Enter a flight record then click the "Save record" button. The message "Record

saved" should appear.

 Chapter 7: Saving data on disc 191

Use Windows Explorer to locate the airlineFlights project folder. This should now contain the data

file flights.dat. Open the data file with a text editing program such as Notepad. Check that the flight

record has been saved correctly:

Return to the airlineFlights program window. Enter and save data for several more flights.

Again open the flights.dat file in a text editor program and check that the records have been added.

Close the program window and return to the NetBeans editing screen.

We have now completed the input section of the program and can work on the output of flight

information using a data table component. This can be done on a separate form.

Go to the Projects window and locate airlineFlightsPackage. Right-click to open the menu, then

select New / JFrame Form. Give the Class Name as displayFlights, but leave the Package name as

airlineFlightsPackage.

192 Java Programming for A-level Computer Science

The new blank form will open. Go to the Properties window and set the defaultCloseOperation to

'HIDE'. This will allow the user to close the display form and return to the flight input screen without

the whole program closing.

Still within the Properties window, click the Code tab. Select the option: Form Size Policy /

Generate pack() / Generate Resize code.

Return to the blank form. Right-click and select Set layout / Absolute layout.

Locate the Table component in the palette. Drag and drop this on the form. Rename the table as

tblDepartures.

Go to the Properties window and locate the model property. Click in the right hand column to open

an editing window, as shown below.

Set the number of Rows to 0 and the number of Columns to 4. Set up titles and data types for the

four columns of the table:

 FlightID String

 Destination String

 Airline String

 Departure Time String

 Chapter 7: Saving data on disc 193

Remove the ticks from the Editable property for each field, as shown below.

Click the OK button to return to the form. The table headings should now be displayed.

Before going further, we should link the displayFlights form to the main program, and check that

this form can be opened correctly when the program is running.

Return to the airlineFlights form and double click the 'Display flights' button to create a method.

194 Java Programming for A-level Computer Science

Add the line of code needed to open the displayFlights form.

 private void btnDisplayFlightsActionPerformed(java.awt.event.ActionEvent evt) {

 new displayFlights().setVisible(true);

}

Run the program. Check that the displayFlights form opens correctly when the button is clicked. It

should be possible to close the displayFlights form and return to the Add record page with the

program still running.

Close the program and return to the NetBeans editing screen. Use the displayFlights.java tab above

the program code window to move to the displayFlights source code page.

We will again add Java modules at the start of the program listing. These are required for the

loading of data and the display of records in the table, along with the processing of any errors which

might occur.

package airlineFlightsPackage;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.Vector;

import javax.swing.JOptio nPane;

import javax.swing.table.DefaultTableModel;

public class displayFlights extends javax.swing.JFrame {

 Chapter 7: Saving data on disc 195

We will add a line of code to give the name of the data file, "flights.dat".

It will be convenient to create a loadData() method to read the records from the disc file and

display them in the table. This method can be called from displayFlights(), which is the first method

to operate when the form is opened.

import javax.swing.JOptionPane;
import javax.swing.table.DefaultTableModel;

public class displayFlights extends javax.swing.JFrame {

 static String fileLocation="flights.dat";

 public displayFlights() {

 initComponents();

 loadData();

 }

 private void load Data()

 {

 }

We will add TRY .. CATCH blocks to the loadData() method to handle any errors which occur when

loading data from disc. We will also need a string variable s to temporarily store the records as they

are being loaded.

Within the TRY block we will add lines of code to open the file ready for input of data, then close the

file when data loading is completed.

 private void loadData()

 {

 String s;

 try

 {

 FileReader r = new FileReader(fileLocation);

 BufferedReader reader = ne w BufferedReader(r);

 reader.close();

 }

 catch (IOException e)

 {

 JOptionPane.showMessageDialog(displayFlights.this, " File error");

 }

 }

196 Java Programming for A-level Computer Science

This program differs from the staff record project earlier in the chapter, as there will be more than

one record to load. We do not know in advance how many records are present in the file, so a

WHILE loop will be used:

 while((s = reader.readLine()) != null)

This line will attempt to read a record from the file and store it temporarily as the variable s. If no

more records are available, then s will be left empty; this is known as a NULL condition. The logical

operator " != " means NOT. The effect of the line of code is therefore:

"Try to read a record from the file and store it in the variable s. Keep doing this as

long as another record can be loaded and the variable s is not empty."

Add lines of code to set up the loop.

 try

 {

 FileReader r = new FileReader(fileLocation);

 BufferedReader reader = new BufferedReader(r);

 while((s=reader.readLine()) !=null)

 {

 }

 reader.close();

 }

 catch (IOException e)

 {

The final stage is to split the record into separate fields at the positions of the commas by using the

split(",") command. The individual field values will be stored in an array called dataItem[]. A new

row is added to the table for each record, and the data items copied into that row.

 try

 {

 FileReader r = new FileReader(fileLocation);

 BufferedReader reader = new BufferedReader(r);

 while((s=reader.readLine())!=null)

 {

 if (s.length()>0)

 {

 Strin g dataItem[] = s.split(",");

 DefaultTableModel model =(DefaultTableModel) tblDepartures.getModel();

 Vector row = new Vector();

 row.add(dataItem[0]);

 row.add(dataItem[1]);

 row.add(dataItem[2]);

 row.add(dataItem[3]);

 model.addRow(row);

 }

 }

 reader.close();

 Chapter 7: Saving data on disc 197

Run the program. Click the "Display flights" button and check that the flights previously entered are

shown correctly in the table.

Close the Display flights form to return to the Add record page. Enter a couple more flight records,

then check that these now appear in the display table.

Fixed and variable length records

The two programs which we have produced so far in this chapter have used variable length records.

By this, we mean that the size of the records stored in the disc file will vary according to the size of

the data items. For example, the record:

AF23,Paris,Air France,08:30

takes less storage space than the record:

BA521,Saltzburg,British Airways,14:15

This strategy has the advantage that the minimum amount of space will be needed to store the data

on disc, but there are some disadvantages.

Since each record is of an unknown length, there is no easy way to find a particular record in the file

without reading through every previous record first.

0 1 2 3 4 5 6 7 8 9

required record

198 Java Programming for A-level Computer Science

A further problem with fixed length records is that it is difficult to edit the data. It is likely that the

size of a record will change when it is edited, and the whole file will have to be rebuilt.

0 1 2 3 4 5 6 7 8 9

Both of these problems can be solved by an alternative approach to storing data which uses fixed

length records. In this system, a record size is chosen which will be sufficient to hold the largest of

the data items for each field. All records are then adjusted to the specified size by adding blank

space if necessary. For example, each record may be given a size of 200 bytes:

0 1 2 3 4 5

0 200 400 600 800 1000

The location of any record within the file can now be calculated using the formula:

 (record location) = (record sequence number) * (record size)

For example, the location of record 4 in this file is:

 (4 * 200) = 800 bytes from the start of the file

It is therefore possible to go straight to the required record without reading any previous records

first, which can greatly improve access speed for a large database.

Fixed length records also offer the advantage that they can be edited and reinserted into the same

place in the file without affecting any other records, even if the amount of data in the edited record

is changed:

0 1 2 3 4 5

The decision whether to use variable length records or fixed length records will depend on weighing

up the advantages and disadvantages for any particular program:

 If very fast access is important, or if the data is likely to be changed frequently, the

programmer may choose fixed length records. The speed advantages may outweigh the

cost of the extra storage space required.

 If the individual records are likely to be very different in size, the programmer may decide to

use variable length records to avoid wasting large amounts of storage space. Slower access

times may then have to be accepted.

 3 new record size after editing

 3 edited record

 added space

 Chapter 7: Saving data on disc 199

In the next program, we will examine how fixed length records can be used in a Java program.

An office supplies company requires a database to keep records of its stock. The records

will have to be updated regularly as quantities of stock and prices change, so a fixed

length record system is to be used.

The fields required for each stock record are:

 Stock ID 4 character code

 Description maximum of 60 characters

 Quantity in stock maximum of 4 characters

 Price maximum of 8 characters

For simplicity, we will treat all the data as text strings. Each text character A-Z, 0-9 and other

keyboard symbols can be represented by one byte of data. The structure of a record is therefore:

StockID Description Quantity Price

4 bytes

60 bytes

4 bytes

8 bytes

making a total size of 76 bytes for each record.

Set up a new project in the standard way. Close all projects, then set up a New Project. Give this

the name officeSupplies, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the officeSupplies project, and select New /

JFrame Form. Give the Class Name as officeSupplies,and the Package as officeSuppliesPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Set up the input form by adding labels, text fields and a button as shown in the illustration on the

next page. Rename the text fields as: txtStockID, txtDescription, txtQuantity and txtPrice. Set the

button caption to 'Add record' and rename the button as btnSave.

200 Java Programming for A-level Computer Science

Use the Source tab to move to the program code screen. Add Java modules which will be needed by

the program, and give the filename "stock.dat".

package officeSuppliesPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane ;

public class officeSupplies extends javax.swing.JFrame {

 static String filename = "stock.dat";

 public officeSupplies() {
 initComponents();
 }

It will be useful to set up a clear() method to reset the text fields. Add this after the

officeSupplies() method.

 public officeSupplies() {
 initComponents();
 }

 private void clear()
 {
 txtStockID.setText("");
 txtDescription.setText("");
 txtQuantity.setText("");
 txtPrice.setText("");
 }

 Chapter 7: Saving data on disc 201

Return to the Design screen and double click the "Add record" button to create a method.

Add lines of code to collect the input data from the text fields. Notice that a trim() function has

been included on each line. This will remove any blank spaces at the beginning or end of the string,

leaving only the characters that were actually entered by the user.

private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 String stockID=txtStockID.getText().trim();
 String description=txtDescription.getText().trim();
 String quantity=txtQuantity.getText().trim();
 String p rice=txtPrice.getText().trim() ;

}

We will be saving fixed length records, so it is important to check that the user does not enter data

items which exceed the allocated space. Add lines of code to check the lengths of the stockID and

description entries, and display an error message if too many characters have been entered.

(Please note that the showMessageDialog commands should be entered as single lines of code with

no line break.)

private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {
 String stockID=txtStockID.getText().trim();
 String description=txtDescription.getText().trim();
 String quantity=txtQuantit y.getText().trim();
 String p rice=txtPrice.getText().trim();

 if (stockID.length()>4)
 {
 JOptionPane.showMessageDialog(officeSupplies.this,
 "Stock ID should not be more than 4 characte rs");
 }
 else
 {
 if(description.length()>60)
 {
 JOptionPane.showMessageDialog(officeSupplies.this,
 "Description should not be more than 60 characters");
 }
 else
 {

 }
 }

}

202 Java Programming for A-level Computer Science

Run the program. Check that error messages are displayed correctly if the entries for Stock ID or

Description exceed the allowed lengths.

Close the program and return to the program code screen.

The next step is to create the record, ready to save into the disc file. We do this be adding a series of

lines similar to:

 description=String.format("%-60s", description);

This line takes the variable description, and adds blank space at the end to create a string with a

length of 60 characters.

 if(description.length()>60)
 {
 JOptionPane.showMessageDialog(officeSupplies.this,
 "Description should not be more than 60 characters");
 }

 else
 {

 stockID=String.format("% - 4s", stockID);
 description=String.format("% - 60s", description);
 quantity=String.format(" %- 4s", quantity);
 pric e=String.format("% - 8s", price);
 String s = stockID + description + quantity + price + "***" ;

 }

The final line of this block:

 String s = stockID + description + quantity + price + "***";

combines the fields to create the record, which is stored temporarily as the variable s. Notice that

three asterisk ("*") characters have been added as an end of record marker. This is not strictly

necessary, but it will make it easier to identify individual records when we examine the data file.

 Chapter 7: Saving data on disc 203

When saving or editing data, it is often a good idea to ask the user to confirm their decision before

changes are made to the data file. We can do this by adding a showConfirmDialog function. Note

that the command:

 int response = JOptionPane.showConfirmDialog(... JOptionPane.QUESTION_MESSAGE);

should be entered as a single line of code without line breaks.

 else
 {
 stockID=String.format("% - 4s", stockID);
 description=String.format("% - 60s", description);
 quantity=String.format("% - 4s", quantity);
 price=String.format("% - 8s", price);
 String s = stockID + description + quantity + price + "***" ;

 int response = JOptionPane.showConfirmDialog(null,
 "Do you want to continue?", "Confirm", JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE);
 if (response == JOptionPane.YES_OPTION)
 {

 }

 }

Run the program. Enter some test data and click the "Add record" button. Check that the "Confirm"

dialog box appears.

private static void writeToFile(String filePath, String data, int position)throws
IOException {

 try (RandomAccessFile file = new RandomAccessFile(filePath, "rw")) {
 if (position<0)
 {
 position=(int) file.length();
 }
 file.seek(position);
 file.write(data.getBytes());
 }
 }

Close the program and return to the code editing screen.

The final step, if the user confirms that they wish to continue, is to save the record into the data file.

Add lines of code to the block beginning:

 if (response == JOptionPane.YES_OPTION)

This block of code will only operate if the user clicks the "Yes" button.

204 Java Programming for A-level Computer Science

if (response == JOptionPane.YES_OPTION)
 {

 try(RandomAccessFile file = new RandomAccessFile(filename, "rw"))
 {

 int pos ition=(int) file.length();
 file.seek(position);
 file.write(s.getBytes());
 JOptionPane.showMessageDialog(officeSupplies.this, "Record saved");
 clear();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(officeSupplies.this, "File error");
 }

 }

Quite a lot is happening here:

 The program tries to open the file stock.dat. It will create a new file called stock.dat if the

file is not found.

 A seek pointer is moved to the end of the file, so that the new record will be added after any

existing records.

 The record, currently stored as the string variable s, is converted into a binary form. Each

character will be represented by one byte.

 The record is saved into the file. If this operation is successful, a confirmation message is

given to the user, otherwise a file error message is displayed.

 After saving the record, the text fields are cleared, ready for the next data entry.

Run the program and enter a stock record. Click the "Add record" button and confirm to save:

 Chapter 7: Saving data on disc 205

Use Windows Explorer to locate the file stock.dat in the officeSupplies project folder. Open the file

in a text editing program such as Notepad. The record should be displayed. Notice that blank space

has been added to create the correct field lengths, and the record ends with the marker " *** ".

Return to the program and enter another record:

Re-open the stock.dat file and check that the second record has been added. Notice that no line

breaks occur between the records.

Enter several more records, then close the program window and return to the program editing page.

From the earlier discussion, you may remember that two advantages of fixed length records are:

 an individual record can be accessed directly by calculating its position in the file,

 an edited record can be inserted back into the file without affecting other records.

We will now develop methods in the officeSupplies project to demonstrate these functions.

Use the Design tab to move to the form display, then add a label, spinner, and two buttons as shown

below. Rename the spinner as spinCount. Set the variable names and text captions for the buttons

as:

 btnLoad Load record

 btnUpdate Update record

206 Java Programming for A-level Computer Science

Double click the "Load record" button to create a method.

The first step is to calculate the position in the file where the required record begins. We can make

use of the formula:

 (record location) = (record sequence number) * (record size)

The record sequence number is given by the spinner value. The size of the four fields of the stock

record adds up to 76 bytes. With the additional three characters for the end of record marker, the

total record size becomes 79 bytes.

 private void btnLoadActionPerformed(java.awt.event.A ctionEvent evt) {

 int recordWanted=(int) spinCount.getValue();
 int position=recordWanted * 79;

 }

Add a TRY … CATCH blocks and lines of code to read the required record from the file:

 private void btnLoadActionPerformed(java.awt.event.ActionEvent evt) {

 int recordWanted=(int) spinCount.getValue();
 int position=recordWanted * 79;

 try
 {
 RandomAccessFile file = new RandomAccessFile(filename, "r");
 file.seek(position);
 byte[] bytes = new byte[79];
 file.read(bytes);
 file.close();
 String s=new String(bytes);
 System.out.print ln(s);
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(officeSupplies.this, "File error");
 }

 }

 Chapter 7: Saving data on disc 207

A series of actions are carried out by this code:

 The program attempts to open the file stock.dat

 The seek pointer moves to the calculated position in the file where the required record

begins.

 The 79 bytes of the record are read from the file, and the file is closed.

 The binary data is then converted into a text string s.

An additional line of code has been added for testing purposes:

 System.out.println(s);

This will display the string variable s in an output window at the bottom of the NetBeans editing

screen while the program is running.

Run the program. Use the spin component to select each of the records in turn and click the "Load

record" button. Remember that the first record is at location 0 in the file. The complete records

should be displayed in the Output window at the bottom of the NetBeans editing screen.

Close the program window and return to the code editing page.

The next step is to split the record into its separate fields and display the data in the text fields on

the form. Add lines of code to do this:

 file.read(bytes);
 file.close();
 String s=new String(bytes);
 System.out.println(s);

 String stockID=s.substring(0,4);
 s=s.substring(4);
 String description=s.substring(0,60);
 s=s.substring(60);
 String quantity=s.substring(0,4);
 s=s.substring(4);
 String price=s.substring(0,8);
 txtStockID.setText(stockID);
 txtDescription.setText(description);
 txtQuantity.setText(quantity);
 txtPrice.setText(price);

 }
 catch(IOException e)

208 Java Programming for A-level Computer Science

A series of substring commands are used:

 The required number of characters are copied from the start of the string s to create a field
variable. For example, four characters are copied to produce a stockID such as:
 2991

 The corresponding number of characters are then deleted from the start of the string s.
For example:
 2991Stapler, heavy duty, black 12 9.72 ***

 becomes:

 Stapler, heavy duty, black 12 9.72 ***

The process is repeated until all field variables have been created, then these are displayed in the

text fields.

Run the program. Check that each of the records can be selected and displayed on the form. You

may need to make the txtDescription field longer so that all the text output is visible.

Close the program and return to the editing screen. If all is working correctly, the test line:

 System.out.println(s);
can now be deleted.

The final method to implement is the updating of a record. This will be very similar to the method

for saving a new record. Go to the Design screen and double click the "Update record" button. Add

code to the method as shown on the next page. Please note that the showMessageDialog and

showConfirmDialog commands should be entered as single lines of code without line breaks.

The stages of the update method are:

 Calculate the position of the current record which is being updated using the formula:

 (record location) = (record sequence number) * (record size)

 Collect the data values from the text fields, removing any blank spaces.

 Check the variable lengths for stockID and description, and give an error message if the data

has too many characters.

 Add spaces to the field variables as necessary, then construct the fixed length record.

 Obtain confirmation from the user to update the record.

 Use the seek pointer to move to the correct position in the file, then overwrite the previous

version of the record with the updated version.

 Chapter 7: Saving data on disc 209

 private void btnUpdateActionPerformed(java.awt.event.ActionEvent evt) {

 int recordWanted=(int) spinCount.getValue();
 int position=recordWanted*79;

 String stockID=txtStockID.getText().trim();
 String description=txtDescription.getText().trim();
 String quantity=txtQuantity.getText().trim();
 String price=txtPrice.getText().trim();

 if (stockID.length()>4)
 {
 JOptionPane.showMessageDialog(officeSupplies.this,
 "Stock ID should not be more than 4 characters");
 }
 else
 {
 if(description.length()>60)
 {
 JOptionPane.showMessageDialog(officeSupplies.this,
 "Description should not be more than 60 characters");
 }
 else
 {
 stockID=String.format("% - 4s", stockID);
 description=String.format("% - 60s", description);
 quantity=String.format("% - 4s", quantity);
 price=String.format("% - 8s", price);
 String s = stockID + description + quantity + price + "***";

 int response = JOptionPane.showConfirmDialog(null,
 "Do you want to continue?", "Confirm",
 JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);

 if (respons e == JOptionPane.YES_OPTION)
 {
 try(RandomAccessFile file = new RandomAccessFile(filename, "rw"))
 {
 file.seek(positio n);
 file.write(s.getBytes());
 JOptionPane.showMessageDialog(officeSupplies.this,
 "Record updated");
 }
 catc h(IOException e)
 {
 JOptionPane.showMessageDialog(officeSupplies.this,
 "File error");
 }
 }
 }
 }

 }

210 Java Programming for A-level Computer Science

Run the program.

Edit the data for any of the records, then click the "Update record" button.

Display other records, then return to the updated record. Check that the revised data is displayed

correctly.

