Chapter 16: Random access files 453

Random access files

When a program runs, a set of data can be loaded from disc into the electronic main memory of the
computer. Here it can be sorted, searched or updated, and any changes saved back to the disc file.

load
electronic main <:|

memory

processing
program <):C of data re-save after

processing

In previous projects we have been largely working with data in electronic memory, using either
arrays or objects as temporary storage for our data. This approach has considerable advantages, as
the processing of a set of records can be thousands of times faster in the electronic main memory
than if data has to be constantly accessed from a disc file using slow read and write operations.

Sometimes, however, the amount of data being handled is too large to all be held in the main
memory at once. A system may handle many thousands or even millions of records. Examples of
such large systems might include Government Social Security records, Driver and Vehicle Licensing
records, customers' policy records for a large Insurance Company, or product records for a major
Supermarket chain. In these situations, the program must directly access individual records from
the disc file during processing.

T geetie.

isc file

~_

processing

program

of data

~ S

A major problem for this type of system is that disc operations are slow, due to the limited speed
with which the mechanical components of the disc drive can move to access particular records. For
a disc based system to work efficiently, the number of disc operations must be kept to an absolute
minimum. When reading a record from disc, we need to know its likely location on the disc so that it
can be loaded in a single operation. Access will be slow if it is necessary to check many different
locations on the disc before finding the required record. In this and the next chapter we will look at
two systems which have been developed to provide fast access to particular records on disc:
random access files and indexed sequential files.



454 Java Programming for A-level Computer Science

Random access files

The clever idea of random access files is to take a value from each record and convert this into a file
location by some mathematical process. For example:

Suppose that a particular stock record contains a product code with the value 69764. A
mathematical process could be devised which always converts this number into some
other small value such as 49. The record would be stored in the calculated file location,
49. When the record needs to be accessed, the required product code is input to the
same mathematical process, and the number 49 is again calculated. It should then be
possible to go directly to location 49 to obtain the record.

record with
product code
69764
m
SAVING TR store at S
=/ Q location 49
> G N search at
location 49
SEARCHING —

mathematical
process always
converts 69764
into 49

record with
product code
69764 is wanted

The mathematical process used by a random access file system is called a hash function. Many
different mathematical processes could be used, but a convenient method is to find the remainder
after division. This can be calculated easily by means of the Java MOD function.

Suppose that a shop expects to stock a maximum of 1000 different products. A random
access file system could be set up using 2000 memory locations, numbered 0 —999.

Stock items may have six digit product codes, such as 389231.

A suitable hash function for calculating the storage location for any product would be:
<product code> MOD 1000

The remainder after dividing 389231 by 1000 will be 231, so the product with stock code

389231 is stored at location 231.

You may have spotted a potential problem with this system. Other stock codes, for example 461231
or 788231, would also generate the same value of 231 when the hash function is applied. If two
records generate the same hash value, it is said that a collision has occurred. Collisions are quite rare
if the random access file is created with at least one third more memory locations than the expected
maximum number of records to be stored. However, collisions can still occur, and a strategy is
needed for dealing with these.



Chapter 16: Random access files 455

In this chapter we will set up a random access file system to handle product records for an on-line
book, music and electronic entertainment store. The store stocks approximately 600 different items,
and each has been given a six digit stockID number. We will explore how records can be saved into a
disc file, accessed from disc, and collisions handled by the system.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give
this the name randomAccess, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the randomAccess project, and select New /
JFrame Form. Give the Class Name as randomAccess, and the Package as randomAccessPackage:

Return to the NetBeans editing screen.

e Right-click on the form, and select Set layout / Absolute layout.

e Go to the Properties window on the bottom right of the screen and click the Code tab.
Select the option: Form Size Policy / Generate pack() / Generate Resize code.

e C(Click the Source tab above the design window to open the program code. Locate the main
method. Use the + icon to open the program lines and change the parameter “Nimbus” to
“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears
and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view. Add a Menu Bar component. Right-click
on the menu items and change the text entries to 'Add record' and 'Find record'. Rename the
menu items as menuAddRecord and menuFindRecord.

Add record | Find record

@ Rename X

MNew Mame: \menuFindRecord

Cancel

Go to the Projects window at the top left of the editing screen and right-click on the
randomAccessPackage folder. Select New / JFrame Form. Give the Class Name as addRecord,
and leave the Package name as randomAccessPackage.

J New JFrame Form pd
Steps Hame and Location
1. Choose File Type Class Name: |addRecord

2. Name and Location

Project: randomAccess
Location: Source Packages b
Package: randomAccessPackage w

Created File: wa programs\randomAccess\src\randomAccessPackage\addRecord. java



456 Java Programming for A-level Computer Science

Click the Finish button to return to the editing screen. The new addRecord form should appear.

e Right-click on the form and select Set layout / Absolute layout.

e Go to the Properties window on the bottom right of the screen and click the Code tab.
Select the option: Form Size Policy /| Generate pack() / Generate Resize code.

e Set the defaultCloseOperation property to 'HIDE'.

Return to the Projects window and again right-click on the randomAccessPackage folder. Select
New / JFrame Form to create another blank form. Give the Class Name as findRecord, and leave
the Package name as randomAccessPackage. Click the Finish button to create the form.

Choose the options Set layout / Absolute layout, Form Size Policy / Generate pack() / Generate
Resize code and defaultCloseOperation/ 'HIDE'.

Click the tab at the top of the editing screen to open the randomAccess.java form. Select the
'Add record' menu option. Go to the Properties window and click on the Events tab. Locate the
mousecClicked event and accept menuAddRecordMouseClicked from the drop down list.

menukeyTyped <ngne:> -
menuSelected <none -

-

mouselragged

mouseEntered <none:> v

Add a line of code to the mouseClicked method to open the addRecord form.

private void menuAddRecordMouseClicked(java.awt.event.MouseEvent evt) {

(new addRecord().setVisible(true); )

Click the Design tab to return to the form layout view, then repeat the procedure to produce a
mouseClicked method for the 'Find record' menu item. Add a line of code to open the
findRecord form.

private void menuFindRecordMouseClicked(java.awt.event.MouseEvent evt) {

(new findRecord().setVisible(true); )

Run the program. Check that 'Add record' and 'Find record' windows can be opened by clicking
the menu items. Check also that these windows can be closed without exiting from the main
program.

Add record Find record

£]




Chapter 16: Random access files

457

Close the program and return to the NetBeans editing screen. Use the tab to move to the
addRecord.java page. Add components to the form to allow product records to be input:

A label with the caption 'Add record'

A label with the caption 'Product code'. Place a text field alongside and rename this as
txtProductCode.

A label with the caption 'Category'. Place a Combo Box alongside and rename this as
cmbCategory.

A label with the caption 'Title / description'. Place a text field alongside and rename this
as txtDescription.

A button with the caption 'Add record'. Rename the button as btnAdd.

Add record

Product code

Category tem 1

Title / description

Add record

Select the embCategory combo box. Go to the Properties window and locate the model
property. Click the ellipsis ( ... ) symbol at the end of the row to open an editing window. Add
the items for the drop down list: Books, Music, Films and Games.

o cmbCategory [JComboBox] - model X

Set cmbCategory's model property using: | Combo Box Model Editor ~

Enter the textual representation of combo box model content. Each row
corresponds to one combo box item.

Books
Music
Films
Games

Reset to Default Cancel Help

Click the OK button to return to the form layout view.



458 Java Programming for A-level Computer Science

Use the Source tab to move to the program code screen. Add Java the modules at the start of the
program listing which will be needed for file handling and to produce a message box.

package randomAccessPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class addRecord extends javax.swing.JFrame {

Click the Design tab to return to the form layout view. Double click the 'Add record' button to create
a method. Add the line of code to call an addRecord( ) method, then begin the method immediately
underneath. We will begin by checking that the product code entered has a correct length of six
characters. Please note that the line beginning

'JOptionPane.showMessageDialog(...'
should be entered as a single line of code with no line break.

private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {
(ﬁaddRecord(); ]
}
/'private void addRecord() \\
{
String productCodeEntered=txtProductCode.getText().trim();
if (productCodeEntered.length()!=6)
{
JOptionPane.showMessageDialog(addRecord.this,
"The product code must be six digits");
}
& J

Run the program. Select the 'Add record' menu option. Check that an error message appears if the
Product code entered does not have a length of six characters.

Add record

Product code 12345678 Message X

|ﬁ The product code must be six digits
w

Categary Books

Title / description

Close the program windows and return to the NetBeans editing screen.

Before developing the program further, we will set up a data class file to store global variables which
will be needed by several of the program forms.



Chapter 16: Random access files 459

Locate the randomAccessPackage folder in the Project window at the top left of the screen. Right-
click on randomAccessPackage and select New / Java Class. Set the Class Name as data. Leave the
Package name as randomAccessPackage.

@ New Java Class %

Steps Name and Location

1. Choose File Type
2. Name and Location

Class Name: |data

Project: randomAccess
Location: Source Packages L
Package: randomAccessPackage v

Created File: C:\Java programs\randomAccess\src\randomAccessPackage\data.java

Click the Finish button to open the data class file. Add a variable fileLocations which will record the
number of record storage locations which will be allocated on disc for the random access file. We
will also assign a name for the disc file.

package randomAccessPackage;

public class data {
public static int filelocations;
public static String filename = "randomAccess.dat";

}

When the program begins, we must initialise the number of storage locations in the random access
file. Use the tab above the editing screen to move to the randomAccess.java page. Add a line of
code to the randomAccess( ) method to set the initial number of storage locations to 10.

package randomAccessPackage;
public class randomAccess extends javax.swing.JFrame {

public randomAccess() {
initComponents();

(ﬁdata.fileLocations=10; ]

}

Use the tab to return to the addRecord.java page.

Locate the addRecord( ) method which you were developing earlier. We will now use the
product code to calculate the file location where the record should be stored, using the formula:

<product code> MOD <number of file locations>



460 Java Programming for A-level Computer Science

Add a call to a function getHashValue( ) which will carry out the calculation and return the number
of the file location where the record should be stored. This function should be inserted immediately
below the addRecord( ) method. The line beginning 'JOptionPane.showMessageDialog(...' should
be entered as a single line of code with no line break.

private void addRecord()

{

String productCodeEntered=txtProductCode.getText().trim();
if (productCodeEntered.length()!=6)
{
JOptionPane.showMessageDialog(addRecord.this,
"The product code must be six digits");

}

else

{
}

int n=getHashValue(productCodeEntered);

}

private int getHashValue(String productCode)
{

int hashValue=-1;

try

{
long code=Long.parseLong(productCode);
hashValue = (int) (code % data.filelLocations);

catch (NumberFormatException e)
{
JOptionPane.showMessageDialog(addRecord.this,
"Incorrect number format");

}

return hashValue;

}
- J

We have included error trapping, in case the product code which is entered contains non-numeric
characters. Run the program. Go to the 'Add record' page. Enter a product code containing one or
more letters, and check that the error is detected.

Add record

Product code 123%yz

Category Books | Message *

|ﬁ Incorrect number format
Title / description

Close the program windows and return to the NetBeans editing screen.



Chapter 16: Random access files 461

Before saving the record, we must set up the structure on disc for the random access file. Use the
tab above the editing screen to move to the randomAccess.java page. We will add sections of code:

At the start of the program listing, include the Java modules which will be needed for file
handling.

Add a block of code to the randomAccess( ) method which will check whether the random
access file already exists on the disc. If not, it calls a method to create the file.

Include the createFile( ) method immediately underneath the randomAccess( ) method. The
createFile( ) method uses a loop to create the required number of blank storage locations.
We are allowing a fixed length of 100 bytes for each storage location.

package randomAccessPackage;

import java.io.File;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class randomAccess extends javax.swing.JFrame {
public randomAccess() {

initComponents();

data.filelLocations=10;

File ¥ = new File(data.filename);
if(f.exists()==false)

createFile();

}

/,brivate void createFile()

{
try (RandomAccessFile file

~

new RandomAccessFile(data.filename, "rw"))

\}

{

data.filelLocations=10;

String s = "locations "+data.filelLocations;
file.write(s.getBytes());

for (int i=0; i<data.filelLocations; i++)

{
String locationNumber=String.format("%-4s", i);
s = "¥*¥*¥"tJlocationNumber+"** ";
int position=1i*100+15;
file.seek(position);
file.write(s.getBytes());
¥
file.close();
}
catch(IOException e)
{
JOptionPane.showMessageDialog(randomAccess.this, "File error");
}

J




462 Java Programming for A-level Computer Science

Run the program. Use Windows Explorer to locate the file randomAccess.dat in the randomAccess
project folder. Open the file with a text editing application such as Notepad. Check that the file
contains a message giving the number of storage locations, followed by the correct number of blank
fixed length records.

| randomAccess.dat - Notepad - O x

File Edit Format View Help
[locations 18  ***g  **

R L
***2 EE
***8 R

***9 EE

Close the program and return to the NetBeans editing screen. As we test the random access file, it
will be more convenient if the contents of the file are displayed on the program screen, rather than
having to keep opening the file in a separate application. We will set up a display method on the
main program page.

Use the Design tab to move to the form layout view. Add a text area component, giving this the
name txtOutput. Insert a button below the text area, with the caption 'Refresh file display'.
Rename the button as btnRefresh.

Add record Find record

Refresh file display

Double click the 'Refresh file display' button to create a method.



Chapter 16: Random access files 463

Add a line of code to the button click method to call a displayFile( ) method. Insert displayFile( )
immediately below the button click method. This method uses a loop to access each of the records
from the random access file, then adds each record to the text string which is output.

private void btnRefreshActionPerformed(java.awt.event.ActionEvent evt) {
(displayFile(); )
}
4 private void displayFile() )
{
int position;
String output="";
byte[] bytes;
try
{
RandomAccessFile file = new RandomAccessFile(data.filename, "r");
bytes = new byte[15];
file.read(bytes);
String s=new String(bytes);
output += s+"\n";
s=s.substring(10);
data.filelLocations=Integer.parselnt(s.trim());
for (int i=0; i<data.filelocations; i++)
{
position=i*100 + 15;
file.seek(position);
bytes = new byte[100];
file.read(bytes);
s=new String(bytes);
output += s+"\n";
file.close();
txtOutput.setText (output);
}
catch(IOException e)
{
JOptionPane.showMessageDialog(randomAccess.this, "File error");
}
\ J

Scroll up to the top of the program listing and add a line at the end of the randomAccess( ) method
to call the displayFile( ) method when the program first runs.

public randomAccess() {
initComponents();
data.fileLocations=10;
File f = new File(data.filename);
if(f.exists()==Ffalse)

createFile();

}

f = new File(data.overflow);
if(f.exists()==false)
{

}

( displayFile(); )

}

createOverflow();




464 Java Programming for A-level Computer Science

Run the program. Check that the set of blank records is displayed in the text area. Notice that the
locations are numbered 0 to 9, which are the possible remainder values when a product code is
divided by 10.

locations 10
LA ] LA
] -
LA b} LA
k] "
g "
aHE -

-

wEEE *

Close the program window and return to the NetBeans editing screen. We are now ready to
save product records into the file. Click the tab to return to the addRecord.java page and locate
the addRecord( ) method. We will add code to carry out a series of tasks:

e We check to make sure that a valid product code has been entered, and a hash value n
has been calculated.

e The product data is assembled into a fixed length record. The product code is given a
field length of 10 bytes, the category is 10 bytes and the title/description is 70 bytes.

e The file location n is used to calculate the position in the file where the record will be
stored.

private void addRecord()
{
String productCodeEntered=txtProductCode.getText().trim();
if (productCodeEntered.length()!=6)
{
JOptionPane.showMessageDialog(addRecord.this,
"The product code must be six digits");

}

else

{
int n=getHashValue(productCodeEntered);

-
if (n>=0)
{
int position;
String category =(String) cmbCategory.getSelectedItem();
String description=txtDescription.getText();
productCodeEntered=String.format("%-10s", productCodeEntered);
category=String.format("%-10s", category);
description=String.format("%-70s", description);
String productRecord=productCodeEntered+category+description;
productRecord=productRecord.substring(e, 90);
try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
{
position=100*n + 25;
file.seek(position);
file.write(productRecord.getBytes());
file.close();
JOptionPane.showMessageDialog(addRecord.this, "Record saved");

}
catch(IOException e)

{

}
txtProductCode.setText("");

txtDescription.setText("");

JOptionPane.showMessageDialog(addRecord.this, "File error");




Chapter 16: Random access files

465

Run the program. Select the 'Add record' menu option. Enter the details of a product sold by the
on-line store, then click the 'Add record' button.

Add record

Title / description

Product code

Category

Message X

658732 |ﬁ Record saved

Games s

Minecraft

Move to the main program window and click the 'Refresh file display' button. Check that the
record which you have entered is displayed in the correct storage location, representing the
remainder when the product code is divided by 10.

Add record Find record

wEED
wEE]
=R ED
wERT
LA
=& &G
HEEE
T
wEwET

EEEQ

locations 10

"
-
*#% 58732
LA
-
-
L5
-
"

R

Games

Minecraft

Enter further records, each time refreshing the file display.

*EED)
LA LN
e
k]
R w
*RmE
*EEE
wEET
thus
thug

locations 10

e

*% 795291
% §58732

-
-
*% 294735
"
R §72297

-

=% 567132

Music

Games

Films

Music

Books

Florence and the Machine: Ceremonials
Minecraft

The Grand Budapest Hotel

Dvorak: New World Symphony

Fflur Dafydd: ¥ Llyfrgell

All seems to go well until a record is entered which generates the same hash value as an exiting
record in the file, as in the case of 672297 and 813387. The earlier record is then overwritten.

*RHE
G
w kT
L]
R R Q

*% 294735

-

*% 813387

*% 567139

Films

Music

Books

The Grand Budapest Hotel

Dire Straits: Brothers in Arms

Fflur Dafydd: ¥ Llyfrgell




466 Java Programming for A-level Computer Science

Close the program windows and return to the NetBeans editing screen. We must now develop a
strategy to handle collisions. A simple solution is to provide an unsorted overflow file where records
can be stored if the required location in the main file is already occupied.

Use the tab above the editing window to move to the data.java class file. Add a name for the
overflow file.

public class data {

public static int filelocations;
public static String filename = "randomAccess.dat";

(:public static String overflow = "overflow.dat"; )

}

Click the tab to move to the randomAccess.java page. Add lines of code to the randomAccess( )
method which will check whether an overflow file already exists. If not, a method createOverflow( )
will be called. Insert this method immediately below the randomAccess( ) method.

public randomAccess() {
initComponents();
data.filelLocations=10;
File f = new File(data.filename);
if(f.exists()==false)

createFile();

}

f = new File(data.overflow);
if(f.exists()==false)

{
createOverflow();
}
}
4 private void createOverflow() )
{
try (RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
{
file.setLength(9);
file.close();
}
catch(IOException e)
{
JOptionPane.showMessageDialog(randomAccess.this, "File error");
}
}
- J

Run the program. Use Windows Explorer to check that an empty overflow.dat file has been created
in the randomAccess project folder.

Close the program window and return to the NetBeans editing screen.



Chapter 16: Random access files

467

We can now work on the storage of records in the overflow area when collisions occur.

Click the tab above the editing screen to return to the addRecord.java page. Locate the

addRecord( ) method.

We will need to add extra code to fully implement our strategy for handling collisions:

Input the product code

Use the hash function to calculate the storage location in the main file
Check whether this location is already occupied

IF location is not occupied THEN store the new record in the main file

ELSE store the new record in the overflow area.

We will firstly add the lines of code necessary to check whether the required location in the main file
is already occupied. The program will open the random access file and return any product code
found at that location.

{

private void addRecord()

String productCodeEntered=txtProductCode.getText().trim();
if (productCodeEntered.length()!=6)

{
JOptionPane.showMessageDialog(addRecord.this,
"The product code must be six digits");
}
else
{

int n=getHashValue(productCodeEntered);

if (n>=0)

{
int position;
String category =(String) cmbCategory.getSelectedItem();
String description=txtDescription.getText();

//VString s="";

String productCodeFound="";
byte[] bytes;

{
position=100*n + 25;
file.seek(position);
bytes = new byte[10];
file.read(bytes);
file.close();
s= new String (bytes);
productCodeFound=s.trim();

}
catch(IOException e)

{

\}

JOptionPane.showMessageDialog(addRecord.this, "File error");

~

try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))

productCodeEntered=String.format("%-10s", productCodeEntered);
category=String.format("%-10s", category);
description=String.format("%-70s", description);




468 Java Programming for A-level Computer Science

We will now check whether a product code is already present at the calculated file location. If not,
then the code written earlier will be used to store the new record in the main file. However, if the
location is already occupied then the record will be added instead to the overflow file.

productCodeEntered=String.format("%-10s", productCodeEntered);
category=String.format("%-10s", category);
description=String.format("%-70s", description);
String productRecord=productCodeEntered+category+description;
productRecord=productRecord.substring(e, 90);
if (productCodeFound.length()<1)
{
try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
{
position=100*n + 25;
file.seek(position);
file.write(productRecord.getBytes());
file.close();
JOptionPane.showMessageDialog(addRecord.this, "Record saved");
}
catch(IOException e)
{
JOptionPane.showMessageDialog(addRecord.this, "File error");
}
= N
else
{
String message ="Hash value: "+n+"\n"+productCodeEntered;
message+="\nLocation occupied. Saving in overflow area.";
JOptionPane.showMessageDialog(addRecord.this,message);
try(RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
{
position=(int) file.length();
file.seek(position);
file.write(productRecord.getBytes());
file.close();
}
catch(IOException e)
{
JOptionPane.showMessageDialog(addRecord.this, "File error");
}
\ J
txtProductCode.setText("");
txtDescription.setText("");
}

Run the program. Click the 'Refresh file display' button to view the records in the random access
file. Select one of the current records:

HE®D &% 294735 Films The Grand Budapest Hotel

:l(x‘x‘ﬁ -

Lk *% B13387 Mus=ic Dire Straits: Brothers in Arms )
LA -

wEED =% LETL139 Books Fflur Dafwydd: Y Llyfrgell




Chapter 16: Random access files 469

Devise a product code which will generate the same hash value. Click the 'Add record' menu option,
then enter a product with this code.

Product code §72207 Message X
Category Music - ﬁ Hash value: 7
672297

Location occupied. Saving in overflow area.

Title / description Dvorak: New Waorld Symphony

Use Windows Explorer to locate the overflow.dat file in the randomAccess project folder, then open
the file with a text editor. Check that the additional record has been saved correctly.

;I overflow.dat - Notepad

File Edit Format View Help
672297 Music Dvorak: New World Symphony

Close the program windows and return to the NetBeans editing screen. As with the main file, it
would be helpful for testing the project if the overflow file is displayed on screen when the program
is running. We will arrange for this to happen.

Use the tab above the editing screen to move to the randomAccess.java page. Locate the
displayFile( ) method, and add a block of code to also output the contents of the overflow.dat file.

for (int i1=0; i<data.filelLocations; i++)
{
position=i*100 + 15;
file.seek(position);
bytes = new byte[100];
file.read(bytes);
s=new String(bytes);
output += s+"\n";

file.close();

( output += "\nOVERFLOW AREA\n\n";
file = new RandomAccessFile(data.overflow, "r");
int overflowRecords=(int) (file.length()/90);
for (int i=@; i<overflowRecords; i++)
{

position=i*90;

file.seek(position);

bytes = new byte[90];

file.read(bytes);

s=new String(bytes);

output += s+"\n";

¥
S file.close(); )

txtOutput.setText(output);

}
catch(IOException e)

{
}

JOptionPane.showMessageDialog(randomAccess.this, "File error");




470 Java Programming for A-level Computer Science

Run the program. Check that records in both the main file and the overflow area are displayed
correctly. Open the 'Add record' window and add further products. Check that each record is
correctly stored in either the calculated location in the main file, or in the overflow area if a collision
has occurred. Enlarge the text area if necessary, so that the complete records are visible.

locations 10

bl ] ** 880210 Music Imy Winehouse: Back to Black

kol | *% 795291 Music Florence and the Machine: Ceremonials
ek 2 *% 658732 Games Minecraft

ol *% 921783 Books Paula Hawkins: The Girl on the Train
kadd ] *% 216494 Games Civilization V

el S *k 204735 Films The Grand Budapest Hotel

uuué -

LA *% 813387 Music Dire Straits: Brothers in Arms

LA ** §02318 Music George Ezra: Wanted On Voyage

Wik G *% 5gT7138 Books Fflur Dafydd: Y Llyfrgell

OVERFLOW AREA

872287 Music Dvorak: New World Symphony
278445 Films James Bond: Spectre

&§71120 Books Kant: Critique of Pure Reason
783910 Books Albert Camus: La Peste

Close the program windows and return to the NetBeans editing screen. We will now work on a page
to find and display individual records, with options to edit or delete the record.

Use the tab above the editing window to move to the findRecord.java page. Add components to the
form:

e Alabel with the caption 'Find record'

e Alabel with the caption 'Product code'. Place a text field alongside and rename this as
txtProductCode. Also add a button with the caption 'Find record'. Rename the button
as btnFind.

e Alabel with the caption 'Category'. Place a Combo Box alongside and rename this as
cmbCategory. Set up the categories: Books, Music, Films and Games, as on the
addRecord.java page.

e Alabel with the caption 'Title / description'. Place a text field alongside and rename this
as txtDescription.

e Buttons with the captions 'Update record' and 'Delete record' Rename the buttons as
btnUpdate and btnDelete.

Find record

Product code Find record

Category Books w

Title / description

Update record Delete record




Chapter 16: Random access files

471

Use the Source tab to move to the program code view. Add the Java modules at the start of the

program which are needed for file handling, and global variables which will be used in the program.

package randomAccessPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class findRecord extends javax.swing.JFrame {

int n;

Boolean found;

String productCodelWanted;
int overflowlocation;

public findRecord() {
initComponents();

}

Use the Design tab to return to the form layout view, then double click the 'Find record' button to
create a method. Add a line of code to open a find( ) method, then add the find( ) method
immediately underneath the button click method.

The method begins by calculating a hash value from the product code entered for the search. If the
product code is valid, the random access file will be opened.

}

private void btnFindActionPerformed(java.awt.event.ActionEvent evt) {

(:find(); )

{

/'private void find()

found=false;
int position;
txtDescription.setText("");
try
{
productCodeWanted=txtProductCode.getText();
n=getHashValue(productCodeWanted);
if (n<9)
{
JOptionPane.showMessageDialog(findRecord.this,
"Incorrect product code");

}
else
{
RandomAccessFile file = new RandomAccessFile(data.filename, "r");
}
}
catch(IOException e)
{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}




472 Java Programming for A-level Computer Science

The find( ) method will require a function to calculate the hash value from the product code. Insert
this function below the find( ) method.

4 N
private int getHashValue(String productCode)
{
int hashvalue=-1;
try
{

long code=Long.parselLong(productCode);
hashValue = (int) (code % data.filelLocations);

}

catch (NumberFormatException e)

{
}

return hashValue;

JOptionPane.showMessageDialog(findRecord.this, "Incorrect number format");

Return to the find( ) method and add lines of code which will carry out several tasks:
e The hash value n is used to calculate the position of the required record in the file.
e The record at the calculated position is loaded, and the record is split into the productCode,
category and description fields.
e If the product code matches the product code entered for the search, then the record is
displayed. However, the required record may not have been found. It may either be in the
overflow area due to a collision, or not present at all.

if (n<0)
{
JOptionPane.showMessageDialog(findRecord.this,
"Incorrect product code");
}
else
{
RandomAccessFile file = new RandomAccessFile(data.filename, "r");
4 position=100*n+25; )
file.seek(position);
byte[] bytes = new byte[90];
file.read(bytes);
file.close();
String s=new String(bytes);
String productCode=s.substring(0,10); s=s.substring(10);
String category=s.substring(0,10); s=s.substring(10);
String description=s.substring(e,79);
if(productCodeWanted.trim().equals(productCode.trim()))
{
found=true;
txtDescription.setText(description);
cmbCategory.setSelectedItem(category.trim());
\} Y,
}
}
catch(IOException e)




Chapter 16: Random access files 473

Run the program. Click the menu to open the 'Find record' page. Enter the product codes for some
items stored in the main file. Details should be displayed; enlarge the text field if necessary so that
the complete title/description is visible. Please note, however, that records stored in the overflow

area are not yet displayed when the product codes are entered. We will correct this problem next.

locations 10
] *% 889210 Music Amy Winel
Whwl % 795291 Music Florence )
#w®2  Rw B58732 Games Minecraf; Find record
Whw3 *% 921783 Books Paula Ha
Wk g % 216494 Games Civilizaj
ekt -1 *h 294735 Films The Grani
AT Product code 889210
whw] w* 813387 Music Dire Strxi
Lt -] **® §92318 Music George E!
Catego i

wwwg W 567139 Sooks Fflur Da gory 28 e
OVERFLOW AREA

Title / description Amy Winehouse: Back to Black
672297 Music Dwvorak: New World |

Close the program windows and return to the editing screen. Return to the find( ) method and add
lines of code which will search the overflow area for the required product code, then display the
record if it is found.

catch(IOException e)

{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}
/'overflowLocation=—1; )
if (found==false)
{
try
{
RandomAccessFile file = new RandomAccessFile(data.overflow, "r");
int recordCount=(int) file.length()/90;
int i=0;
while(found==false && i<recordCount)
{
position=90*i;
file.seek(position);
byte[] bytes = new byte[90];
file.read(bytes);
String s=new String(bytes);
String productCode=s.substring(0,10); s=s.substring(10);
String category=s.substring(0,10); s=s.substring(10);
String description=s.substring(e,70);
if(productCodeWanted.trim().equals(productCode.trim()))
{
found=true;
txtDescription.setText(description);
cmbCategory.setSelectedItem(category.trim());
overflowlLocation=i;
}
i++;
file.close();
}
catch(IOException e)
{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}
}
o 4




474 Java Programming for A-level Computer Science

Run the program. Repeat the previous tests, and check that it is now possible to find and display
records from both the main file and the overflow area.

Add record Find record

locations 10
Lbiaddi ] *% BB9210 Mus=ic Ly
*Ew] *% 795291 Mus=ic Flo
FEED *% §587T32 Games Min Eind record
FEEG *% 921783 Books Pau
FEEG #% 216494 Games Civ]
wEED *% 294735 Films= The
#EEE = Product code 278445
FERET ** 813387 Music Dir
FEEE *% §92318 Music Geo
KERG *% 56T139 Books Fflj Category Films cu
CVERFLCW ARER

Title / description .
672297 Music Dvorak: Hew W E James Band: Spectre
278445 Films James Bond: 5
671120 Books Kant: Critigun
783910 Books Zlbert Camus:

Update record Delete record

<

Close the program windows and return to the NetBeans editing screen. We will work next on the
option to update a record.

Use the Design tab to move to the form layout view, then double click the 'Update record' button to
produce a button click method. Add a line of code to call an update( ) method. Create the update()
method immediately underneath, and add lines of code which will collect the data entries for the
updated record and package these into the correct fixed length record format.

private void btnUpdateActionPerformed(java.awt.event.ActionEvent evt) {

(:update(); ]

}
. . )
private void update()
{
String category =(String) cmbCategory.getSelectedItem();
String description=txtDescription.getText();
String productCode=String.format("%-10s", productCodeWanted);
category=String.format("%-10s", category);
description=String.format("%-70s", description);
String s = productCode+ category + description;
s=s.substring(@, 90);
}




Chapter 16: Random access files 475

As in the find( ) method, we will need to treat records differently for the main file and overflow area
when carrying out the update. When the update method is called, the values of two global variables
have already been set:

n: the hash value for the location where the record would be stored if it is in the main file.

overflowLocation: gives the position of the record in the overflow file if it is stored there.
However, this variable will have a value of -1 if the record is not stored in the
overflow area, but stored instead in the main file.

We will first deal with the case where the record is in the main file, and overflowLocation has a
value of -1. Add lines of code to update the main file entry.

private void update()

{
String category =(String) cmbCategory.getSelectedItem();
String description=txtDescription.getText();
String productCode=String.format("%-10s", productCodeWanted);
category=String.format("%-10s", category);
description=String.format("%-70s", description);
String s = productCode+ category + description;
s=s.substring(e, 90);

//’if (overflowLocation<®) ‘\\
{

try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
{
int position=100*n + 25;
file.seek(position);
file.write(s.getBytes());
file.close();
JOptionPane.showMessageDialog(findRecord.this, "Record updated");
}
catch(IOException e)
{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}
}
txtProductCode.setText("");

\\‘#xtDescription.setText(""); 4//

Run the program. Go to the 'Find record' page, then make a change to the title / description field of
one of the products in the main file. Check that this is updated correctly.

locations 10

=0 = 889210 Musiec Amy Winehouse: Back to Black

wal % 795291 Music Florence and the Machine: Ceremonials

w2 * 658732 Games Minecraft

**3 * 921783 Books Paula Hawki (2]

ew g * 216494 Games Civilizatia

a1 * 2094735 Films The Grand B

T

w7 * 813387 Music Dire Strait Message X
whg * §92318 Music George Ezra N

**g * 567139 Books Fflur Dafyd Find record ﬁ Record updated
OVERFLOW AREA
672297  Music Dvorak: New World Sym Product code 795291 Find record
278445 Films James Bond: Spectre
671120 Books FKant: Critique of Pur
783910 Books Albert Camus: La Pes T e e

Title / description Florence and the Machine: How Big, How Blue, How Beautiful

Update record Delete record




476 Java Programming for A-level Computer Science

Close the program windows and return to the editing screen. Locate the update( ) method. We will
now insert the lines of code needed to update records in the overflow area.

catch(IOException e)

{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}
}
//Velse ‘\\
{
try(RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
{
int position=90* overflowlLocation;
file.seek(position);
file.write(s.getBytes());
file.close();
JOptionPane.showMessageDialog(findRecord.this, "Record updated");
}
catch(IOException e)
{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}

U ,
txtProductCode.setText("");
txtDescription.setText("");

Run the program. Go to the 'Find record' page and repeat the test of the update method, this time
choosing a record stored in the overflow area. Check that the record is updated correctly.

locations 10 )
BREQ *% 889210 Music Amy Winehou =
REE] *% 795291 Music Florence an
RERD *% §58732 Games Minecraft
REEG *% 921783 Books Paula Hawki
Rk *% 216494 Games Civilizatiqg
HEEE *% 284735 Films The Grand B Eiheco
LA R
FEET *% 813387 Music Dire Strait
REEG % §92318 Mus=ic George Ezra
FREQ #% 5RT139 Books Fflur Dafvd Product code §72207 Endhecon
CVERFLCW ARER
Category Music v
672297 Music Dvorak: New World Sym
278445 Films James Bond: Spectre
671120 Books Eant: Critigque of Pur " _—
Title / description Dvorak: New World Symphony, No. 9 in E minor
783810 Books Albert Camuas: La Pes Ymp Vi
Update record Delete record
<

Close the program windows and return to the NetBeans editing screen. You may have noticed that it
is possible to update the category and title / description fields of the records, but not the product
code. This was a deliberate design decision, to avoid upsetting the file structure. If the user enters
an incorrect product code, they must delete the complete record and re-enter it correctly. We will
work on the delete function next.



Chapter 16: Random access files 477

Use the Design tab to move to the form layout view, then double click the 'Delete record' button to
create a method. We will add a line of code to the button click method to call deleteRecord( ), then
insert the deleteRecord( ) method immediately below the button click method.

We begin the delete( ) method by asking the user to confirm that they wish to delete the record.

Please note that the line beginning
int response = JOptionPane.showConfirmDialog(...
should be entered as a single line of code with no line breaks.

The program checks whether the record to be deleted is in a main file location. If so, the record will
be replaced at that position by a blank record.

private void btnDeleteActionPerformed(java.awt.event.ActionEvent evt) {

(:deleteRecord(); ]
}
/,brivate void deleteRecord() ‘\
{
String s="";
s=String.format("%-90s", s);
int response = JOptionPane.showConfirmDialog(null,
"Are you sure you want to delete this record?", "Confirm",
JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);
if (response == JOptionPane.YES_OPTION)
{
if (overflowLocation<®)
{
try(RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
{
int position=100*n + 25;
file.seek(position);
file.write(s.getBytes());
file.close();
JOptionPane.showMessageDialog(findRecord.this, "Record deleted");
}
catch(IOException e)
{
JOptionPane.showMessageDialog(findRecord.this, "File error");
}
}
txtProductCode.setText("");
txtDescription.setText("");
}
Uz J

Run the program. Click the 'Refresh file display' button to show list the records in the files. Click the
'Find record' menu option, then select one of the records stored in the main file. Click the 'Delete

record' button, then confirm to delete.




478 Java Programming for A-level Computer Science
£ - |
locations 10 Confirm *
®%%Q %% §83210 Music BEmy Win B
Tl 7R 795281 Masic Florend |ﬂ Are you sure you want to delete this record?
HE®D *#% 58732 Games Minecra| Find record b
xew3  #x 921783 Books Paula H No
xEwq  wx 716494 Games Civiliz|
x#%5 %% 794735 Films The Gral
e Product code 658732 Find record
wew7 4% 513387 Music Dire 5t
REHD #% §92318 Music George |
®#%g  *# 567139 Books Fflur D Category Games ~
OVERFLOW ARER
Title / description Minecraft
672297 Music Dvorak: HNew World
278445 Films James Bond: Spect)
671120 Books EKant: Critigue of]
783910 Books Albert Camms: La Update record Delete record
Refresh the listing and check that the record has been deleted correctly.

Return to the NetBeans editing screen, and locate the delete( ) method. Add the remaining code
needed to delete a record from the overflow area.

catch(IOException e)
{

}

JOptionPane.showMessageDialog(findRecord.this, "File error");

}

//>else \\
{

try(RandomAccessFile file = new RandomAccessFile(data.overflow, "rw"))
{

int position=90* overflowlLocation;

file.seek(position);

file.write(s.getBytes());

file.close();

JOptionPane.showMessageDialog(findRecord.this, "Record deleted");
}
catch(IOException e)

{
¥

JOptionPane.showMessageDialog(findRecord.this, "File error");

NG J
txtProductCode.setText("");
txtDescription.setText("");

Run the program. Repeat the test, this time deleting a record from the overflow area.
Confirm X
locations 10 =
wwwg  wx 880210 Music amy Winend ﬂ Are you sure you want to delete this record?
#wkl  wx 785291 Music Florence & Find record
wHRD R Yes No
wwwd w® 921783 Books Paula Hawl
whw g #% 216494 Games Civilizati
xwxg A% 204735 Films The Grand Product code 783910 Find record
wwng  mw
whw] % 813387 Music Dire Strai
whRE *% §92318 Music George Ez1 Category Books -
kbl ] *%x 567139 Books Fflur Dafy
OVERFLOW RREA Title / description Albert Camus: La Peste
672297 Music Dvorak: New World 53
278445 Films James Bond: Spectre
671120 Books Kant: Critique of By Update record
783910 Books Albert Camus: La Pe




Chapter 16: Random access files 479

Close the program windows and return to the NetBeans editing screen.

The program that we have created is working correctly, but you might have identified a serious
problem with the design. If many more records are added, the main random access storage area will
be filled and further records will be stored as overflow. The overflow area uses a simple unsorted
file, so has to be searched by the linear search method. For records on disc, this will be very slow.
The solution is to restructure the file with a larger number of file locations, then reallocate the
existing records in the main file and overflow area using a different hash function. We will do this
now...

Go to the Projects window at the top left of the editing screen and right-click on the
randomAccessPackage folder. Select New / JFrame Form. Give the Class Name as restructure,
and leave the Package name as randomAccessPackage.

| @ New JFrame Form X
Steps Name and Location
1. Choose File Type Class Name: |restructure

2. MName and Location

Project: randomAccess
Location: Source Packages Lo
Package: randomAccessPackage v

Created File: |va programs\randomAccess\src\randomAccessPackage\restructure.java

Click the Finish button to return to the editing screen. The new restructure form should appear.

e Right-click on the form and select Set layout / Absolute layout.

e Go to the Properties window on the bottom right of the screen and click the Code tab.
Select the option: Form Size Policy / Generate pack() / Generate Resize code.

e Set the defaultCloseOperation property to 'HIDE'.

We will now link the new page into the menu system. Use the tab above the editing window to select
the randomAccess.java page. Click the Design tab to move to the form layout view.

Select a Menu component from the palette, then drag and drop this onto the Menu Bar. Right-click to
change the text caption to 'Restructure file'. Rename the Menu as menuRestructure.

Add record Find record | Restructure file

@ Rename *

New Name: menuRestructure

Cancel

With the 'Restructure file' menu selected, go to the Properties window and click the Events tab.
Locate the mouseClicked event, and accept menuRestructureMouseClicked from the drop down list.
Add a line of code to the mouseClicked( ) method to open the restructure form.

private void menuRestructureMouseClicked(java.awt.event.MouseEvent evt) {

(: new restructure().setVisible(true); :)




480 Java Programming for A-level Computer Science

Run the program. Select the 'Restructure file' menu option and check that the new window opens
correctly. It should be possible to close this window by clicking the cross icon without closing the
main program.

Close the program and return to the NetBeans editing screen. Click the tab above the editing
window to go to the restructure.java page. Add components to the form:

e Alabel with the caption 'Number of memory locations'. Place a text field alongside and
rename this as txtLocationsWanted.

e A button with the caption 'Restructure random access file'. Rename the button as
btnRestructure.

Number of memory locations

Restructure random access file

Our object will now be to increase the number of memory locations in the main random access
storage area, so that the number of overflow records is reduced and the access times are improved.
There are currently 10 random access locations. If, for example, the number was increased to 20
then some records in the overflow area could now move to the main file:

Location Product code
0 671120
Location Product code 1
0 889210 2
1 795291 3 921783
4
B —
4 216494 795291 6
5 278445 658732 7 813387
s 921783 g
7 813387 216494 9
3 692318 278445 10 889210
9 567139 813387 11 795291
692318 12 658732
overflow 567139 13
294735 14 216494
Product code 671120 15 294735
e 783910 16
672297 17 672297
783910 18 692318
672297 19 567139
overflow
Product code
783910




Chapter 16: Random access files 481

Restructuring the file involves several steps:

o We will copy all the original records from the random access file and overflow area into a
temporary file.

e A new empty random access file will be created with the required number of storage
locations.

e The records in the temporary file will then be reallocated to the larger random access file
using a new hash function, for example:

<product code> MOD 20

Any collisions will be handled by moving the records to a new overflow area.

Begin the programming by double clicking the 'Restructure random access file' button to create a
method. Add a line of code to call a restructure( ) method, then add this method immediately
underneath. Please note that the line beginning 'int response = JOptionPane.showConfirmDialog '
should be entered as a single line of code with no line breaks.

The restructure( ) method begins by collecting the number of storage locations required, then asks
the user to confirm that they wish to restructure the file. We then create an empty temporary file
into which the existing records can be copied.

private void btnRestructureActionPerformed(java.awt.event.ActionEvent evt) {

(ﬁrestructure(); ]
}

/'private void restructure()
{

int position;

int overflowlLocations;

String s=txtLocationsWanted.getText();

int locationsWanted=Integer.parselnt(s);

int response = JOptionPane.showConfirmDialog(null,
"Are you sure you want to restructure the file with "+
locationsWanted+" locations?", "Confirm", JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);

if (response == JOptionPane.YES_OPTION)

{
try
{
RandomAccessFile mainFile = new RandomAccessFile(data.filename, "r");
RandomAccessFile overflowFile = new RandomAccessFile(data.overflow, "r");
RandomAccessFile tempFile = new RandomAccessFile("temp.dat", "rw");
tempFile.setLength(0);
}
catch(IOException e)
{
JOptionPane.showMessageDialog(restructure.this, "File error");
}
}
}
- J

Scroll up to the top of the program listing and add the Java modules which will be needed for file
handling and to create message boxes, as shown below.




482 Java Programming for A-level Computer Science

package randomAccessPackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class restructure extends javax.swing.JFrame {

Run the program. Select the 'Restructure file' menu option, then enter a number of memory
locations for the new file. Click the button and check that a confirm message is displayed correctly.

Number of memory locations 50

Restructure random access file

Confirm X

.a Are you sure you want to restructure the file with 50 locations?

Yes No

Close the program windows to return to the NetBeans editing screen.

Add the lines of code below which use a loop to obtain each of the product records from the current
main file. The records are then copied into the temporary file.

try

{
RandomAccessFile mainFile = new RandomAccessFile(data.filename, "r");
RandomAccessFile overflowFile = new RandomAccessFile(data.overflow, "r");
RandomAccessFile tempFile = new RandomAccessFile("temp.dat", "rw");
tempFile.setLength(0);

(,Vfor (int i=0; i<data.filelocations; i++) )

{

position=100*i+25;
mainFile.seek(position);

byte[] bytes = new byte[90];
mainFile.read(bytes);

String record=new String(bytes);
s=record.trim();

if (s.length() >0)

{

tempFile.write(bytes);
}

}
\\VmalnFlle.close(); J

}
catch(IOException e)

{
}

JOptionPane.showMessageDialog(restructure.this, "File error");

Run the program. Use the 'Restructure file' menu option, then enter a number of storage locations
for the new file. Click the button and confirm to continue with the restructuring.

Use Windows Explorer to locate the temp.dat file in the randomAccess project folder. Open the file
using a text editing application such as Notepad.



Chapter 16: Random access files

483

Check that the records currently in the main file are listed.

| temp.dat - Notepad — O
File Edit Format View Help

889210 Music Amy Winehouse: Back to Black
795291 Music Florence and the Machine: How Big, How Blue, How Beautiful
921783 Books Paula Hawkins: The Girl on the Train
216494 Games Civilization v
294735 Films The Grand Budapest Hotel
813387 Music Dire Straits: Brothers in Arms
692318 Music George Ezra: Wanted On Voyage
567139 Books Fflur Dafydd: Y Llyfrgell

Close the program windows and return to the NetBeans editing screen. Add lines of code to the
restructure( ) method which will also add records from the overflow area to the temp.dat file.

for (int i=0; i<data.filelLocations; i++)
{
position=100*i+25;
mainFile.seek(position);
byte[] bytes = new byte[90];
mainFile.read(bytes);
String record=new String(bytes);
s=record.trim();
if (s.length() >0)

tempFile.write(bytes);
}
}

mainFile.close();

overflowLocations=(int) overflowFile.length()/90;
for (int i=@; i<overflowLocations; i++)
{
position=90*i;
overflowFile.seek(position);
byte[] bytes = new byte[90];
overflowFile.read(bytes);
String record=new String(bytes);
s=record.trim();
if (s.length() >0)
{

}

tempFile.write(bytes);

}
overflowFile.close();
\ (): /

}
catch(IOException e)

{
}

JOptionPane.showMessageDialog(restructure.this, "File error");




484 Java Programming for A-level Computer Science

Run the program. As before, use the 'Restructure file' menu option then enter a number of storage
locations for the new file. Click the button and confirm to continue with the restructuring.

Use Windows Explorer to locate the temp.dat file in the randomAccess project folder. Open the file
using a text editing application. Check that all records from the overflow area have now been added
to the file.

_| temp.dat - Notepad . O x
File Edit Format View Help

889210 Music Amy Winehouse: Back to Black

795291 Music Florence and the Machine: How Big, How Blue, How Beautiful

921783 Books Paula Hawkins: The Girl on the Train

216494 Games Civilization Vv
294735 Films The Grand Budapest Hotel
813387 Music Dire Straits: Brothers in Arms
692318 Music George Ezra: Wanted On Voyage
567139 Books Fflur Dafydd: Y Llyfrgell
672297 Music Dvorak: New World Symphony, No. 9 in E minor
278445 Films James Bond: Spectre
671120 Books Kant: Critique of Pure Reason

Close the program windows and return to the NetBeans editing screen. We will now complete the
remaining stages of the strategy to restructure the file.

Begin by adding lines of code to the restructure( ) method which will:

e Update the number of storage locations in the data class global variable, so that this value
will be available to other parts of the program.

o (Call a createMainFile( ) method which will rebuild an empty random access file with the
required number of storage locations.

e Create a new empty overflow file.

for (int i=@; i<overflowLocations; i++)
{
position=90*i;
overflowFile.seek(position);
byte[] bytes = new byte[90];
overflowFile.read(bytes);
String record=new String(bytes);
s=record.trim();
if (s.length() >0)

tempFile.write(bytes);
}

overflowFile.close();

data.filelLocations=1locationsWanted;

createMainFile();

mainFile=new RandomAccessFile(data.filename, "rw");
overflowFile = new RandomAccessFile(data.overflow, "rw");
overflowFile.setLength(0);

}
catch(IOException e)

{
}

JOptionPane.showMessageDialog(restructure.this, "File error");




Chapter 16: Random access files

485

Add the createMainFile( ) method immediately underneath the restructure( ) method.

/,»private void createMainFile()
{
int position;
try (RandomAccessFile file = new RandomAccessFile(data.filename, "rw"))
{
file.setLength(0);
String s = "locations "+data.filelocations;
s=String.format("%-15s", s);
file.write(s.getBytes());
for (int i=0; i<data.filelLocations; i++)
{
String locationNumber=String.format("%-4s", i);
s = "¥*¥*"tlocationNumber+"** ";
s=String.format("%-100s", s);
position=1i*100+15;
file.seek(position);
file.write(s.getBytes());
file.close();
}
catch(IOException e)
{
JOptionPane.showMessageDialog(restructure.this, "File error");
}
\}

J

Return to the restructure( ) method and add lines of code which will access each record from the

temp.dat file, ready to allocate it to a location in the new random access file.

data.filelLocations=locationsWanted;

createMainFile();

mainFile=new RandomAccessFile(data.filename, "rw");
overflowFile = new RandomAccessFile(data.overflow, "rw");
overflowFile.setLength(0);

int tempLocations=(int) tempFile.length()/90;
for (int i=@; i<tempLocations; i++)
{
position=90*i;
tempFile.seek(position);
byte[] bytes = new byte[90];
tempFile.read(bytes);
String oldRecord=new String(bytes);
s=oldRecord.trim();
if (s.length() >0)
{
String productCode=oldRecord.substring(0,6).trim();
int n=getHashValue(productCode);

}
}

tempFile.close();

JOptionPane.showMessageDialog(restructure.this, "File Pestructured");/

}
catch(IOException e)

{

JOptionPane.showMessageDialog(restructure.this, "File error");




486 Java Programming for A-level Computer Science

A function will be needed to calculate the hash value for each record, using the new number of
storage locations. Add the method getHashValue( ) immediately below the restructure( ) method.

\
private int getHashValue(String productCode)
{
int hashValue=-1;
try
{
long code=Long.parseLong(productCode);
hashvalue = (int) (code % data.filelLocations);
catch (NumberFormatException e)
{
}
return hashValue;
}
- J

Return to the restructure( ) method. Add lines of code to store the records in the new main file, or in
the new overflow area if a collision occurs.

for (int i=@; i<templLocations; i++)

{
position=90*i;
tempFile.seek(position);
byte[] bytes = new byte[90];
tempFile.read(bytes);
String oldRecord=new String(bytes);
s=o0ldRecord.trim();
if (s.length() >0)
{

String productCode=oldRecord.substring(0,6).trim();
int n=getHashValue(productCode);

position=n*100 + 25;
mainFile.seek(position);
bytes = new byte[90];
mainFile.read(bytes);
String newFileEntry=new String(bytes);
String productCodeFound=newFileEntry.substring(e,6);
productCodeFound=productCodeFound.trim();
if (productCodeFound.length()<1)
{
position=100*n + 25;
mainFile.seek(position);
mainFile.write(oldRecord.getBytes());
}

else

{
position=(int) overflowFile.length();
mainFile.seek(position);
overflowFile.write(oldRecord.getBytes());

! Y,

}

}
tempFile.close();
JOptionPane.showMessageDialog(restructure.this, "File restructured");




Chapter 16: Random access files 487

We have now completed the restructuring. Run the program. As before, use the 'Restructure file'
menu option then enter 50 as the number of storage locations for the new file. Click the button and
confirm to continue with the restructuring.

Return to the main program page and refresh to file display. Check that a random access file with
the 50 storage locations has been created, and that the records have been correctly allocated.

Add record Find record Restructure file

HEEIZ KK A
®®&33 &% 921783 Books Paula Hawkins: The Girl on the Train

HHRB& -

RRk&3IL k% 304735 Films The Grand Budapest Hotel

kkkas L

®E&EFT %% 813387 Mus=ic Dire Straits: Brothers in Arms

mEEID kR

*&&%39 %% LETI3S Books Fflur Dafydd: Y Llyfrgell

HEELD  kH

w&%4] **% TO5201 Music Florence and the Machine: How Big, How Blue, How Be

EEGD o

BRE4T R

wE&44q  *% 216494 Games Civilization V

RRkR4L k% JTRE445 Films Jame=s Bond: Spectre

kR g L

mEELT  xx /72297 Music Dvorak: New World Symphony, No. 9 in E minor

ERE4D R

HEELG  EE

COVERFLOW ARER

Refresh file display

Return to the 'Restructure file' window, and now select 100 storage locations. Check that the file is
again correctly restructured.

Add record Find record Restructure file

HEEQD AR ~
®&®83 %% 021783 Books Paula Hawkins: The Girl on the Train

kkksq L

HEHBE  RE

EEEQE W RE

#*&87 &% 813387 Music Dire Straits: Brothers in Arms

EREZE AR

kkksa L

HEHQD  AE

=*%Q] &% 795291 Mus=ic Florence and the Machine: How Big, How Blue, How Be
HEEQD AR

HEAOT AR

**%04 A% 216494 Games Civilization V

kkkas L

EEEQE R

#REQT A% {72297 Music Dvorak: New World Symphony, No. 9 in E minor

HEAOR AR

EEEQD  RE

OWVERFLOW AEER

Refrash file display




