
 A1

APPENDIX A

Three-dimensional graphics techniques

Three-dimensional graphics programs have many important applications,

from computer aided engineering and architectural design to aircraft flight

simulators and film animation. This chapter forms a brief introduction and

starting point if you want to design your own three-dimensional modelling

program....

 but be warned ...

 the mathematical techniques are quite

complex and require an understanding of trigonometry and matrices. If you

are not familiar with these topics, it would be useful to read appropriate

sections of an A-level mathematics textbook.

Rotation in two dimensions

Before tackling anything as difficult as three-dimensional graphics, we will

begin with a simple drawing program to input shapes and rotate them in two

dimensions.

Set up a directory ROTATE and save a new Delphi project into it. Use the

Object Inspector to Maximize the Form, and drag the grid to nearly fill the

screen. Add an Image box, two Buttons, and a Spin Edit component:

Click on the Image box and press ENTER to bring up the Object Inspector.

 A2

Click on the Image Box and press ENTER to bring up the Object Inspector.

Set the Width property to 640, and the Height to 480. Drag the Image Box

into position on the screen.

Give the Buttons the captions 'clear' and 'exit'. Place a Label above the

Spin Edit with the caption 'angle'.

Double-click the 'exit' button to produce an event handler and add the line:

procedure TForm1.Button2Click(Sender: TObject);

begin

 halt;

end;

Now double-click the Form grid to produce an 'OnCreate' procedure and

add the line:

procedure TForm1.FormCreate(Sender: TObject);

begin

 image1.canvas.rectangle(0,0,640,480);

end;

Compile and run the program. Check that a white background area is

displayed. Click the 'exit' button to return to the Delphi editing screen.

We are now going to set up a procedure to draw shapes on the Form using

the mouse. First, however, it will be useful to define two constants cx and

cy to give the coordinates of the centre of the image box:

Insert the constants just above the 'implementation' heading near the top of

the program:

........

var

 Form1: TForm1;

const

 cx=320;

 cy=240;

implementation

........

cy = 240

cx = 320

 A3

Click on the Image Box and press ENTER to bring up the Object Inspector.

Click the Events tab, then double-click alongside 'OnMouseDown' to

produce an event handler. Add the line:

procedure TForm1.Image1MouseDown(Sender:TObject;

 Button:TMouseButton;Shift:TShiftState;X,Y: Integer);

begin

 image1.canvas.rectangle(x-2,y-2,x+2,y+2);

end;

Compile and run the program. It should be possible to plot small squares on

the image area by clicking the mouse:

Return to the Delphi editing screen. Later in the program we will need to

know the positions where the mouse has been clicked on the image area.

We will set up arrays to record the across coordinate (xpos) and the down

coordinate (ypos) for each point. A variable will also be needed to keep a

count of the number of points entered. Add these to the Public declarations

section:

 public

 { Public declarations }

 xpos,ypos:array[1..100] of integer;

 count:integer;

 end;

 A4

The next step in developing the program is to draw a continuous line on the

image area rather than a series of separate points. We begin by initialising

the count to zero before drawing begins. Double-click on the Form grid to

bring up the 'OnCreate' procedure, then add a line:

procedure TForm1.FormCreate(Sender: TObject);

begin

 image1.canvas.rectangle(0,0,640,480);

 count:=0;

end;

An algorithm we can use to draw a shape is:

1. increase the point count by 1

2. IF this is the first point entered THEN

3. put a dot on the screen

4. ELSE

5. draw a line from the previous point to the current point

6. END IF

7. record the coordinates of the current point in the arrays

Go to the 'MouseDown' procedure for the Image Box. Delete the existing line

of program and replace it with the following:

 procedure TForm1.Image1MouseDown(Sender:
 TObject; Button: TMouseButton;

 Shift: TShiftState;X,Y:Integer);

begin

 count:=count+1;

 if count=1 then

 image1.canvas.pixels[x,y]:=clBlack

 else

 begin

 with image1.canvas do

 begin

 moveto(xpos[count-1]+cx,ypos[count-1]+cy);

 lineto(x,y);

 end;

 end;

 xpos[count]:=x-cx;

 ypos[count]:=y-cy;

end;

This starts by increasing the number of points entered:

 count:=count+1;

The count was initialised to zero, so count will become 1 when the first point is

being entered.

 A5

When the first point is entered we just turn the pixel black at the position

where the mouse was clicked - this will give a small black dot on the screen:

if count=1 then

 image1.canvas.pixels[x,y]:=clBlack

The coordinates of the current point are recorded in the arrays:

 xpos[count]:=x-cx;

 ypos[count]:=y-cy;

We calculate the position relative to the centre of the Image Box by

subtracting the constants cx and cy from the actual screen position.

As each further point is entered, a section of line will need to be drawn:

The coordinates of the previous point visited will be stored at array index

[count-1]. We access the data and move to that point, remembering to add

back cx and cy:

 moveto(xpos[count-1] + cx, ypos[count-1] + cy);

A line is then drawn to the current mouse position:

 lineto(x,y);

Compile and run the program. This time when the mouse is clicked on the

image area, a continuous line can be drawn:

Test the drawing facility, then return to the Delphi editing screen.

 A6

It will be useful to be able to blank out the image area so that a new shape

can be drawn. Double-click the 'clear' button to produce an event handler,

then add lines to clear the screen and re-initialise the point count to zero:

procedure TForm1.Button1Click(Sender: TObject);

begin

 image1.canvas.rectangle(0,0,640,480);

 count:=0;

end;

Compile and run the program. Enter a shape. Check that the screen can be

cleared by clicking the button, then a new shape entered. Return to the

Delphi editing screen.

We will now attempt to rotate a shape around the centre point of the Image

Box. Suppose that a shape is rotated by an angle :

As a result of the rotation, a typical point (x,y) on the shape moves to the

position (X,Y). Using trigonometry, it is possible to calculate the new

coordinates X and Y:

X x y

Y x y

 

 

.cos .sin

.sin .cos

 

 

Proofs of these equations can be found in mathematics textbooks.

Note: The two equations can also be written in matrix form:

X

Y

x

y









 



















cos sin

sin cos

 

 

The equations and the matrices are just different ways of saying the same

thing. From the rules for multiplying matrices, it is always the case that:

A B

C D

x

y

x A y B

x C y D

















 





. .

. .



(x,y)

(X,Y)

 A7

Try substituting:

 A = cos , B = - sin , C = sin , D = cos 

and show that the matrices multiply out to give the correct equations for X

and Y.

The matrix containing the trigonometric functions:

 






 





cossin

sincos

is known as the two dimensional rotation matrix. We will be making use

of this later to develop more complex formulae for rotations in three

dimensions.

We will now use the formulae to rotate the shape drawn in the Image Box.

Begin by adding two new arrays rx and ry to the Public delarations section:

 public

 { Public declarations }

 xpos,ypos,rx,ry:array[1..100] of integer;

 count:integer;

 end;

These arrays will be used to store the new coordinates we calculate for each

of the points after the shape is rotated.

Bring the Form1 window to the front, then double-click the Spin Edit

component to produce an event handler. Add the lines:

procedure TForm1.SpinEdit1Change(Sender: TObject);

var

 i:integer;

 angle:real;

begin

 angle:=spinedit1.value*pi/180;

 for i:=1 to count do

 begin

 rx[i]:=round(xpos[i]*cos(angle)-

 ypos[i]*sin(angle));

 ry[i]:=round(xpos[i]*sin(angle)+

 ypos[i]*cos(angle));

 end;

 with image1.canvas do

 begin

 rectangle(0,0,640,480);

 moveto(rx[1]+cx,ry[1]+cy);

 A8

 for i:=2 to count do

 lineto(rx[i]+cx,ry[i]+cy);

 end;

end;

We begin by converting the angle in the Spin Edit box from degrees to

radians:

angle:=spinedit1.value*pi/180;

A loop then takes each of the points in turn and uses the rotation formulae to

calculate the new coordinates after the rotation angle is applied:

 for i:=1 to count do

 begin

 rx[i]:=round(xpos[i]*cos(angle) - ypos[i]*sin(angle));

 ry[i]:=round(xpos[i]*sin(angle) + ypos[i]*cos(angle));

The results are stored in the rx and ry arrays. The next section of the

program uses these values to replot the shape. We move to the starting

point:

 moveto(rx[1]+cx,ry[1]+cy);

then a loop draws lines for each of the remaining points around the shape:

 for i:=2 to count do

 lineto(rx[i]+cx,ry[i]+cy);

Compile and run the program. Use the mouse to draw a shape, then alter

the angle shown by the Spin Edit. The shape should rotate around the

centre point of the Image Box. Use the 'clear' button, then check that a

different shape can be entered and rotated.

Rotating a wire-frame cube

We can now move on to three dimensional shapes. Our next objective is to

set up a program to display a cube. There should be a procedure to rotate

the cube into any position as it is being viewed on the screen. {Note: In this

section, the term 'cube' is taken to include cuboid shapes where the width,

length and height may be different.}

Set up a new directory CUBE and save a Delphi project into it. Use the

Object inspector to maximize the form, and drag the grid to nearly fill the

screen.

 A9

Three-dimensional graphics require a coordinate system with three axes -

these are called x, y and z:

To enter the position of a cube which is oriented parallel to the three axes,

we only need to give the x,y,z positions of opposite corners - the other

corner positions can then be calculated. We will set up the Form to input

this information:

Add six Edit Boxes to the Form. Put Labels alongside with the captions:

'x1=', 'y1=', 'z1=', 'x2=', 'y2=', and 'z2=':

Place an Image Box on the grid, and use the Object Inspector to set its

Width property to 640 and Height to 480.

Double-click the Form1 grid to produce an 'OnCreate' event handler, then

add a line of program to give a white background for the image area:

procedure TForm1.FormCreate(Sender: TObject);

begin

 image1.canvas.rectangle(0,0,640,480);

end;

x

y

z
(x1,y1,z1)

(x2,y2,z2)

z2-z1

y2-y1

x2-x1

 A10

To proceed further with the solid modelling program we will need a

numbering system for the corners and faces of the cube which is to be

drawn by the computer.

Using the system above, coordinates will be entered for corners 1 and 7.

Since the cube faces are initially parallel to the x, y and z axes, it is possible

to list the coordinates of the remaining six corners:

 corner 2 (x2, y1, z1)

 corner 3 (x2, y2, z1)

 corner 4 (x1, y2, z1)

 corner 5 (x1, y1, z2)

 corner 6 (x2, y1, z2)

 corner 8 (x1, y2, z2)

We will set up an array to record the coordinates of each corner of the cube:

 c[1..8, 1..3]

Add this array to the Public declarations section:

 public
 { Public declarations }

 c:array[1..8,1..3] of real;

corner number

coordinate:

1 = x

2 = y

3 = z

FACE 3

FACE 6

FACE 4

1

2

3

4

6

5

7

8

(x1,y1,z1)

(x2,y2,z2)

FACE 1 FACE 2

FACE 5

x

y

z

 A11

Add a button to the form and give this the caption 'draw'. Double-click the

button to produce an event handler, then add the line:

procedure TForm1.Button1Click(Sender: TObject);

begin

 drawcube;

end;

We will set up a procedure 'drawcube' to produce the screen display. First

add this to the list of procedures at the top of the program:

 procedure FormCreate(Sender: TObject);

 procedure Button1Click(Sender: TObject);

 procedure drawcube;

Go to the bottom of the program to insert the procedure:

procedure TForm1.drawcube;

var

 x1,y1,z1,x2,y2,z2:real;

begin

 x1:=strtofloat(edit1.text);

 y1:=strtofloat(edit2.text);

 z1:=strtofloat(edit3.text);

 x2:=strtofloat(edit4.text);

 y2:=strtofloat(edit5.text);

 z2:=strtofloat(edit6.text);

 c[1,1]:=x1; c[1,2]:=y1; c[1,3]:=z1;

 c[2,1]:=x2; c[2,2]:=y1; c[2,3]:=z1;

 c[3,1]:=x2; c[3,2]:=y2; c[3,3]:=z1;

 c[4,1]:=x1; c[4,2]:=y2; c[4,3]:=z1;

 c[5,1]:=x1; c[5,2]:=y1; c[5,3]:=z2;

 c[6,1]:=x2; c[6,2]:=y1; c[6,3]:=z2;

 c[7,1]:=x2; c[7,2]:=y2; c[7,3]:=z2;

 c[8,1]:=x1; c[8,2]:=y2; c[8,3]:=z2;

end;

This begins by transfering the values from the edit boxes to the x1 .. z2

variables. These are then used to set the coordinates for each of the corners

of the cube.

 A12

We must now tell the computer the order in which to link the corners to

draw the faces of the cube. Refering to the diagram on the previous page,

face 1 can be drawn by starting at corner 1, drawing lines to corners 2, 3,

and 4, then back to corner 1:

 face 1 corners 1, 2, 3, 4

The other corner sequences are:

 face 2 corners 2, 6, 7, 3

 face 3 corners 6, 7, 8, 5

 face 4 corners 1, 5, 8, 4

 face 5 corners 4, 3, 7, 8

 face 6 corners 1, 2, 6, 5

An array can be used to record these sequences, with index values specifying

the face and corner:

 f [3, 2] = 7

Add this array to the Public declarations section:

 public

 { Public declarations }

 c:array[1..8,1..3] of real;

 f:array[1..6,1..4] of integer;

Return to the end of the drawcube procedure. Add the lines to set up the

array values:
.......

 c[8,1]:=x1; c[8,2]:=y2; c[8,3]:=z2;

 f[1,1]:=1; f[1,2]:=2; f[1,3]:=3; f[1,4]:=4;

 f[2,1]:=2; f[2,2]:=6; f[2,3]:=7; f[2,4]:=3;

 f[3,1]:=6; f[3,2]:=7; f[3,3]:=8; f[3,4]:=5;

 f[4,1]:=1; f[4,2]:=5; f[4,3]:=8; f[4,4]:=4;

 f[5,1]:=4; f[5,2]:=3; f[5,3]:=7; f[5,4]:=8;

 f[6,1]:=1; f[6,2]:=2; f[6,3]:=6; f[6,4]:=5;

end;

As in the two-dimensional drawing program, it will be useful to have

constants cx and cy to give the offset for the centre of the image box. Add

these just above the 'implementation' heading:

const

 cx=320;

 cy=240;

implementation

face 3
second corner in

the sequence

 A13

Go to the bottom of the drawcube procedure and insert the lines to draw the

cube faces:

 f[6,1]:=1; f[6,2]:=2; f[6,3]:=6; f[6,4]:=5;

 scale:=20;

 with image1.canvas do

 begin

 brush.color:=clWhite;

 rectangle(0,0,640,480);

 for face:=1 to 6 do

 begin

 for i:=1 to 4 do

 begin

 corner:=f[face,i];

 x:=cx+round(c[corner,1]*scale);

 y:=cy+round(c[corner,2]*scale);

 if i=1 then

 begin

 startx:=x;

 starty:=y;

 moveto(x,y);

 end

 else

 lineto(x,y);

 end;

 lineto(startx,starty);

 end;

 end;

end;

We begin by giving a scale factor:

 scale:=20;

The coordinates for the corners will be multiplied by this scale factor so that

the cube is drawn at a reasonable size on the screen.

A loop draws each of the faces in turn:

 for face:=1 to 6 do

Inside this is another loop which draws each edge of the face:

 for i:=1 to 4 do

The f array gives the reference number of each corner in the sequence

required to draw the face:

 corner:=f[face,i];

 A14

The x position of the corner is retrieved from the array of corner

coordinates. This value multiplied by the scale factor, then we add the offset

for the centre of the image box:

 x:=cx+round(c[corner,1]*scale);

We now have the actual x position where the corner is to be plotted on the

screen. The screen y position of the corner is calculated in a similar way:

 y:=cy+round(c[corner,2]*scale);

If this is the first corner of the face, we just move to the (x,y) position, ready

to start the line drawing. We also record the start position:

 if i=1 then

 begin

 startx:=x;

 starty:=y;

 moveto(x,y);

For the remaining edges, a line is drawn:

 lineto(x,y);

The outline of the face is completed by drawing a final line back to the

starting point:

 lineto(startx,starty);

Add variables at the start of the drawcube procedure:
procedure TForm1.drawcube;

var

 x1,y1,z1,x2,y2,z2:real;

 face,corner,x,y,startx,starty,i:integer;

the add the variable 'scale' to the Public declarations section:
 { Public declarations }

 c:array[1..8,1..3] of real;

 f:array[1..6,1..4] of integer;

 scale:real;

Compile and run the program. Enter test values in the edit boxes:

 x1 = - 4 y1 = -2 z1 = -1

 x2 = 4 y2 = 2 z2 = 1

(-4, -2, -1)

x

y

z

(4, 2, 1)

 A15

Click the 'draw' button. A rectangle appears in the image box:

We are viewing the cube in the direction of the z-axis and only see face 1:

To view the other faces it will be necessary to apply a rotation to the cube.

This is similar to the two dimensional rotation we carried out in the

previous program. However, moving the cube into every possible position

will require a combined rotation around two axes - we can call the two

rotation angles  {theta} and  {phi}.

view direction

rotation axis 

rotation axis 

 A16

Before stopping the program, try various combinations of x, y, and z

coordinates for the two opposite corners of the cube. Notice that because of

the view direction, only the x- and y-coordinates affect the shape which is

drawn.

We now need to carefully work out the formulae to rotate the cube.

Consider first the rotation . This takes place in the x,z plane:

Supposing that some point with the coordinates (x, z) is rotated by an angle

 so that it ends up in position (X, Z). The new coordinates of the point are

given by the formulae:

X x z

Z x z

 

 

.cos .sin

.sin .cos

 

 

These are the same formulae as for the two-dimensional rotation program -

we have just used z instead of y. The two equations can also be written in

matrix form:

X

Z

x

z









 



















cos sin

sin cos

 

 

However, because we are working in three-dimensions, we mustn't ignore

the y coordinate. This will be unaffected if the point rotates in the x,z

plane, so the new coordinate Y will be the same as the old coordinate y.

The full set of equations is therefore:

X x z

Y y

Z x z

 



 

.cos .sin

.sin .cos

 

 

x

y

z

x

z

x,z plane x, z plane

 A17

x

y

z

These three equations can also be written in matrix form:

X

Y

Z

x

y

z



















































cos sin

sin cos

 

 

0

0 1 0

0

Note: You can check that the equations and the matrices are equivalent by

applying the rule for multiplication:

Substitute:

A = cos  B = 0 C = -sin  D = 0 E = 1

F = 0 G = sin  H = 0 I = cos 

The other rotation  takes place in the y, z plane:

For rotations in the y, z plane, the x coordinate will be unaffected. The set

set of equations for a rotation are therefore:

X x

Y y z

Z y z



 

 

.cos .sin

.sin .cos

 

 

These three equations can be written in matrix form:

A B C

D E F

G H I

x

y

z

x A y B z C

x D y E z F

x G y H z I



































 

 

 

. . .

. . .

. . .

X

Y

Z

x

y

z

















 

































1 0 0

0

0

cos sin

sin cos

 

 

y

z

x

y, z plane

y, z plane

 A18

We now arrive at the general case where the cube is rotated by both an angle

 and an angle  - together these allow us to turn the cube into any position

we wish.

We can derive the three-dimensional rotation matrix by multiplying together

the matrices for rotation in the x, z and y, z planes:

cos sin

sin cos

cos sin

sin cos

cos sin .sin sin .cos

cos sin

sin cos .sin cos .cos

 

 

 

 

    

 

    

0

0 1 0

0

1 0 0

0

0

0





































 



















This leads to the equations:

X x y z

Y y z

Z x y z

  

 

  

.cos .sin .sin .sin .cos

.cos .sin

.sin .cos .sin .cos .cos

    

 

    

We can use these in the program to produce a fully rotating cube, but first

we must have a way of changing the rotation angles  and . Go to the

Form1 screen and add two Spin Edit components. Place Labels above them

with the captions 'theta' and 'phi':

 A19

Find the position in the drawcube procedure where the corner sequences for

each face have just been entered. Inset lines at this point to calculated the

new coordinates of each corner after rotation by the angles  and . Also

alter the lines which set values for x and y so that they use the calculated

values in the r array:

 f[6,1]:=1; f[6,2]:=2; f[6,3]:=6; f[6,4]:=5;

 for corner:=1 to 8 do

 begin

 r[corner,1]:=c[corner,1]*cos(theta)

 -c[corner,2]*sin(theta)*sin(phi)

 -c[corner,3]*sin(theta)*cos(phi);

 r[corner,2]:=c[corner,2]*cos(phi)

 -c[corner,3]*sin(phi);

 r[corner,3]:=c[corner,1]*sin(theta)

 +c[corner,2]*cos(theta)*sin(phi)

 +c[corner,3]*cos(theta)*cos(phi);

 end;

 scale:=20;

 with image1.canvas do

 begin

 brush.color:=clWhite;

 rectangle(0,0,640,480);

 for face:=1 to 6 do

 begin

 for i:=1 to 4 do

 begin

 corner:=f[face,i];

 x:=cx+round(r[corner,1]*scale);

 y:=cy+round(r[corner,2]*scale);

Add the variables theta, phi, and the r array to the Public declarations list:

 public

 { Public declarations }

 c,r:array[1..8,1..3] of real;

 f:array[1..6,1..4] of integer;

 scale,theta,phi:real;

Go to the Form1 screen and double-click the 'theta' Spin Edit to produce an

event handler. Add the lines:

procedure TForm1.SpinEdit1Change(Sender: TObject);

begin

 theta:=spinedit1.value*pi/180;

 drawcube;

end;

 A20

This converts the value in the Spin Edit box from degrees to radians, then

calls the procedure to redraw the cube in the new rotated position.

Produce a similar event handler for the 'phi' Spin Edit:

procedure TForm1.SpinEdit2Change(Sender: TObject);

begin

 phi:=spinedit2.value*pi/180;

 drawcube;

end;

Compile and run the program. Enter the test coordinates:

 x1 = - 4 y1 = -2 z1 = -1

 x2 = 4 y2 = 2 z2 = 1

The initial side view of the cube appears as a rectangle. It should now be

possible to change the angles in the SpinEdit boxes and watch the cube

rotate three-dimensionally:

At present the cube is being drawn in 'wire frame' view, as if it were

transparent. In the next section we will explore the techniques for

displaying it as a solid opaque object...

 A21

Solid modelling using a depth sort algorithm

To produce a more realistic rotating cube, we need to show the faces in solid

colour. Go to the drawcube procedure and replace the section of program

which drew outlines for the faces. The procedure becomes:

 scale:=20;

 with image1.canvas do

 begin

 brush.color:=clWhite;

 rectangle(0,0,640,480);

 for face:=1 to 6 do

 begin

 for i:=1 to 4 do

 begin

 corner:=f[face,i];

 x[i]:=cx+round(r[corner,1]*scale);

 y[i]:=cy+round(r[corner,2]*scale);

 end;

 case face of

 1:brush.color:=clRed;

 2:brush.color:=clYellow;

 3:brush.color:=clLime;

 4:brush.color:=clTeal;

 5:brush.color:=clBlue;

 6:brush.color:=clWhite;

 end;

 Polygon

 ([Point(x[1],y[1]),Point(x[2],y[2]),

 Point(x[3],y[3]),Point(x[4],y[4])]);

 end;

 end;

end;

Instead of calculating the x- and y-coordinates of each corner while a face is

being drawn, it is more convenient to calculate the coordinates beforehand

and store them in arrays:

 for i:=1 to 4 do

 begin

corner:=f[face,i];

x[i]:=cx+round(r[corner,1]*scale);

y[i]:=cy+round(r[corner,2]*scale);

 end;

A case structure sets the colour for each of the six faces of the cube:

 A22

 case face of

 1:brush.color:=clRed;

 6:brush.color:=clWhite;

 end;

We then use the Polygon command to draw the face. The structure of this

command is:

 Polygon([first corner, second corner, third corner, fourth corner]);

The position of each corner is specified in the form:

 Point (x-coordinate, y-coordinate)

Before testing the program, go to the top of the drawcube procedure and

change the x and y variables to arrays:

procedure TForm1.drawcube;

var

 x1,y1,z1,x2,y2,z2:real;

 face,corner,startx,starty,i:integer;

 x,y:array[1..4] of integer;

Compile and run the program. Enter the test coordinates:

 x1 = - 4 y1 = -2 z1 = -1

 x2 = 4 y2 = 2 z2 = 1

then press the 'draw' button. Adjust the angles  and  and watch what

happens as the cube rotates:

 A23

The faces are being plotted with the correct shape and colour, but they are

not overlapping each other in the correct sequence - some faces which

should be hidden at the back of the cube are being drawn on top. Return to

the Delphi editing screen to tackle this problem.

We need to carry out a 'depth sort' of the faces. The faces furthest from the

viewer need to be drawn first, then the nearer faces plotted on top to build

up the correct picture of the cube:

The order in which faces should be plotted depends on the z-coordinates. In

this example, face B should be plotted first as it is furthest from the viewer

and contains the maximum z-coordinate of any corner of the cube. Faces C

and A have lower z-coordinate values for the corners, so will be plotted on

top. Face B will actually be hidden from view in the finished picture of the

cube.

A strategy for drawing the cube, known as a 'depth sort algorithm' can be

written:

1. LOOP for face = 1 to 6

2. find the maximum z-coordinate of any of the corners of the face

3. record the number of the face and the maximum z-coordinate

4. END LOOP

5. carry out a bubble sort on the parallel arrays containing the face

numbers and their maximum z values

6. plot the faces in order, starting with the face which contains the

maximum z-coordinate value

y

x

z

A

B

C

maximum z-coordinate

 A24

Go to the drawcube procedure and add the program lines to carry out the

depth sort:

 scale:=20;

 with image1.canvas do

 begin

 brush.color:=clWhite;

 rectangle(0,0,640,480);

 for face:=1 to 6 do

 begin

 sequence[face]:=face;

 corner:=f[face,1];

 max[face]:=r[corner,3];

 for i:=2 to 4 do

 begin

 corner:=f[face,i];

 if r[corner,3] > max[face] then

 max[face]:=r[corner,3];

 end;

 end;

 for i:=1 to 5 do

 for j:=i+1 to 6 do

 begin

 if max[j]>max[i] then

 begin

 tempmax:=max[i];

 tempsequence:=sequence[i];

 max[i]:=max[j];

 sequence[i]:=sequence[j];

 max[j]:=tempmax;

 sequence[j]:=tempsequence;

 end;

 end;

 for j:=1 to 6 do

 begin

 face:=sequence[j];

 for i:=1 to 4 do

 begin

 corner:=f[face,i];

 x[i]:=cx+round(r[corner,1]*scale);

 y[i]:=cy+round(r[corner,2]*scale);

The algorithm begins with a loop to check each face in turn:

 for face:=1 to 6 do. . . .

The number of the face is recorded in an array called 'sequence':

 sequence[face]:=face;

 A25

We then find the maximum z-coordinate for any of the four corners of the

face:

 corner:=f[face,1];

 max[face]:=r[corner,3];

 for i:=2 to 4 do

 begin

 corner:=f[face,i];

 if r[corner,3] > max[face] then

 max[face]:=r[corner,3];

 end;

 end;

This uses the technique you learned in Chapter 8. We begin by assuming

that corner 1 has the maximum z-value and store this in the 'max' array. The

other corners are then checked in turn, and 'max' is updated each time a

larger value is found.

We now have two parallel arrays containing the maximum z-values for each

of the faces, e.g.:

 etc...

It is now just necessary to sort the arrays so that the faces are arranged in

descending order of z-value, i.e.:

 etc...

This is done by a bubble sort:

for i:=1 to 5 do

 for j:=i+1 to 6 do

 begin

 if max[j]>max[i] then

 begin

 tempmax:=max[i];

 tempsequence:=sequence[i];

 max[i]:=max[j];

 sequence[i]:=sequence[j];

 max[j]:=tempmax;

 sequence[j]:=tempsequence;

sequence max

1 2.75

2 3.82

3 1.49

sequence max

2 3.82

1 2.75

3 1.49

 A26

The loop to draw the faces can then begin. The number of the face to be

plotted is obtained from the sequence array at the start of each pass through

the loop:

 for j:=1 to 6 do

 begin

 face:=sequence[j];

 {continue with drawing the face}

Go to the top of the drawcube procedure and add the variables tempmax, j,

tempsequence, and the max and sequence arrays:

procedure TForm1.drawcube;

var

 x1,y1,z1,x2,y2,z2,tempmax:real;

 face,corner,startx,starty,

 i,j,tempsequence:integer;

 x,y:array[1..4] of integer;

 max:array[1..6] of real;

 sequence:array[1..6] of integer;

Compile and run the program. Enter the test coordinates, the try altering the

 and  angles. The cube should be correctly displayed now:

Return to the Delphi editing screen and bring the Form1 window to the

front. To finish the program, it would be nice to have the cube rotating by

itself on screen. We will do this now.

Change the caption on the 'draw' button so that it reads 'rotate'. Add

another Button with the caption 'pause', and place a Timer component on

the grid:

 A27

Double-click the 'rotate' button to bring up the event handler. Change the

procedure to:

procedure TForm1.Button1Click(Sender: TObject);

begin

 timer1.enabled:=true;

end;

Produce an event handler for the 'pause' button and add the line:

procedure TForm1.Button2Click(Sender: TObject);

begin

 timer1.enabled:=false;

end;

Click the Timer icon and press ENTER to bring up the Object Inspector.

Set the Interval property to 150, and Enabled to False. Return to the

Form1 grid and double-click the Timer icon to produce an event handler.

Add the lines:

procedure TForm1.Timer1Timer(Sender: TObject);

begin

 spinedit1.value:=spinedit1.value+6+random(6);

 if spinedit1.value>360 then

 spinedit1.value:=spinedit1.value-360;

 spinedit2.value:=spinedit2.value+3+random(3);

 if spinedit2.value>360 then

 spinedit2.value:=spinedit2.value-360;

 theta:=spinedit1.value*pi/180;

 phi:=spinedit2.value*pi/180;

 drawcube;

end;

The purpose of this procedure is to increase the  and  angles at the end of

each time interval, then redraw the cube so that it appears to be rotating. A

random value has been introduced so that the motion is more interesting and

unpredictable.

Compile and run the completed program. Enter coordinates for a cube and

test the automatic rotation. It is possible to stop the motion with the 'pause'

button, then manually adjust the cube by means of the Spin Edit boxes.

