
 52

FIVE

Designing programs

The projects that we have worked on so far have been relatively
straightforward to program directly on the computer. With more complex
projects, however, it is necessary to carefully plan the work beforehand to
ensure that the finished program will meet the client's requirements. In this
chapter we will look at some of the design methods used by programmers.

Railway tickets

A narrow gauge railway in North Wales requires a computer
program to calculate ticket prices and keep a record of the total
value of tickets issued each day.

The fares are calculated according to the following rules:
• The adult single fare for a journey along the line is £3.20.
• The child single fare is 60% of the adult fare.
• The return fare is 1½ times the single fare.
• Each passenger wishing to travel first class pays a supplement of

80 pence, which covers either a single or return journey.
• Groups of 4 or more people travelling together receive a discount

of 10% on the total fare.

You are asked to design and produce a program to issue the tickets.

This is quite a complex problem. The first step in program design is often to
produce a schematic diagram. We begin by writing down each of the tasks
which the program is to carry out. These tasks can then be classified as
either:

• INPUT, where information is entered using the keyboard or
mouse

• PROCESSING, where the computer carries out calculations or
sorting of the data

• OUTPUT, where results are displayed on the screen or printed
out on paper.

PROGRAM SCHEMATIC

 53

The stages of the program have been linked by arrows, and the processing
stages have been enclosed with a dotted line to make the structure clearer.
We now have a better idea of the work which will be required.

First we might turn our attention to the input of the passenger requirements.
A useful way of planning this stage is to use a technique called an 'algorithm
progressive refinement sequence'. We begin by writing down the overall
objective:

1. input passenger requirements

This can then be subdivided into:
1.1 input the number of passengers
1.2 input single/return journey
1.3 input first/second class

Step 1.1 could be further subdivided:
1.1.1 input the number of adults
1.1.2 input the number of children
1.2 input single/return journey
1.3 input first/second class

The process of refining the design has continued until we know exactly what
inputs will be needed. Now is the time to begin work on the program:

enter passenger
requirements

calculate ticket
cost

display ticket

add ticket cost
to day total

display day total
of ticket sales

input

processing processing

output
output

 54

Set up a new sub-directory called TICKETS. Open a Delphi project and
save it into the sub-directory. Use the Object Inspector to maximize the
form, and drag the grid larger to nearly fill the screen.

From the refinement sequence above, we can see that four inputs will be
required. The numbers of adults and children can be entered using edit
boxes; add these to the form and place labels alongside:

The next step is to input the type of journey: single or return. A convenient
way of doing this is to use a radio button group. On the STANDARD
component menu select radio group:

Place a radio group box on the form grid. Press ENTER to bring up the
Object Inspector and add the caption 'journey type':

Now go to the Items property and double-click the right hand column to
bring up the String list editor window:

Radio group

 55

Type in the entries 'Single' and 'Return'. Click OK and two small round
buttons labelled 'Single' and 'Return' should appear inside the border of the
radio group box. Adjust the box side if nesessary so that the labels are
displayed neatly.

Compile and run the program to test the radio group. It should be possible
to select either the 'Single' or the 'Return' option, but not both at once:

Return to the Delphi editing screen and set up a similar radio group box
alongside to input the choice of first class or second class. Run the
program to test this:

 56

It is now necessary to add event handler procedures for the inputs.
Double-click on the edit box for 'Adults' and add lines of program to the
Edit1Change procedure:

procedure TForm1.Edit1Change(Sender: TObject);
begin
 if edit1.text='' then
 adult:=0
 else
 adult:=strtoint(edit1.text);
end;

This will store the number of adults as an integer variable called 'adult'.
Produce a similar event handler for the 'Children' edit box:

procedure TForm1.Edit2Change(Sender: TObject);
begin
 if edit2.text='' then
 child:=0
 else
 child:=strtoint(edit2.text);
end;

Add the variables to the public declarations list:

 public
 { Public declarations }
 adult,child:integer;

We can now create an event handler for the 'Journey type' radio group.
Double-click the radio group box to set up the procedure then add the
following lines of program:

procedure TForm1.RadioGroup1Click(Sender: TObject);
begin
 if radiogroup1.itemindex=1 then
 return:=true
 else
 return:=false;
end;

This is quite complicated and needs some explanation. The buttons of the
radio group are given reference numbers by the computer when the
component is set up:

button 0

button 1

 57

We can find which button has been selected by checking the itemindex value
for the radio group: if this is 0 then the journey type is 'Single', if it is 1 then
the journey type is 'Return'.

A convenient way to record the journey type is to use a new kind of variable
called a Boolean (named after George Boole who developed the
mathematical logic used by computers). A Boolean variable can have only
the values 'TRUE' or 'FALSE'.

We are going to use a Boolean variable with the name 'return ' to have the
following meanings:
 return = TRUE return ticket required
 return = FALSE single ticket required.

Create a similar event handler for the 'Class' radio group:

procedure TForm1.RadioGroup2Click(Sender: TObject);
begin
 if radiogroup2.itemindex=0 then
 firstclass:=true
 else
 firstclass:=false;
end;

The Boolean variable this time is called 'firstclass'. It will be set to TRUE if
a first class ticket is required, or to FALSE for a second class ticket. Notice
that the 'First' button is at the top of the radio group so will be numbered 0:

Add the Boolean variables to the public declarations list:

 public
 { Public declarations }
 adult,child:integer;
 firstclass,return:boolean;
 end;

button 0

button 1

 58

This completes the handling of inputs and we can turn our attention to
processing.
Before starting a calculation procedure in the program, let's use an
algorithm progressive refinement sequence to find exactly what is
required. (The term 'algorithm ' means 'the sequence of instructions needed
to carry out a task').

Begin with the overall task. We can number this 2 since it is the second
stage of the program:

2. calculate ticket cost

We might now devise a strategy for carrying out the calculation:
2.1 calculate the single journey cost for the passengers
2.2 if a return ticket is required then
2.3 add the extra for a return fare
2.4 end if {end of the 'if' condition}

 2.5 if the passengers wish to travel first class then
 2.6 add the supplement for first class
 2.7 end if
 2.8 if there are four or more passengers then

2.9 deduct the group discount
2.10 end if

 Step 2.1 can be further refined:

2.1.1 find the single journey cost for the adults
2.1.2 add the single journey cost for the children

Once a detailed algorithm has been produced, the clearest way of displaying
this is to draw a flow chart, as shown on the next page. The hard work of
planning the calculation is now completed and it will be relatively simple to
write the program.

Add a button and label this 'issue ticket' :

 59

An edit box will also be needed to display the ticket total during the testing
of the calculation procedure. Put this below the 'issue ticket' button.

Flow chart for the ticket calculation

start

find adult single fares:
ticketcost = adults * £3.20

add the child single fares:
ticketcost = ticketcost + (children * £3.20 * 60%)

YES

NO

return?

multiply by 1½:
ticketcost = ticketcost * 1.5

YES

NO

first class?

add 80 pence for each passenger:
ticketcost = ticketcost + (adults +children) * £0.80

YES

NO

4 or more?

deduct 10% discount:
ticketcost = ticketcost - (ticketcost * 10%)

stop

 60

Double-click the 'issue ticket' button to create an event handler and add
program lines to calculate the ticket cost:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ticketcost:=adult*3.20;
 ticketcost:=ticketcost + child*3.20*0.60;
 if return=true then
 ticketcost:=ticketcost*1.5;
 if firstclass=true then
 ticketcost:=ticketcost + (adult+child)*0.80;
 if (adult+child) >=4 then
 ticketcost:=ticketcost - (ticketcost*0.10);
 edit3.text:=floattostrf(ticketcost,ffFixed,8,2);
end;

Make sure that you can relate these lines of program to the steps on the flow
chart.

It will be necessary to add 'ticketcost' as a real number variable:

 public
 { Public declarations }
 adult,child:integer;
 ticketcost:real;
 firstclass,return:boolean;
 end;

Compile and run the program to see if it works correctly. Try out test data
for different groups of passengers - some travelling first class and some
second class, some making single journeys and some return. Remember that
groups of 4 or more will have a 10% discount. Check the results with a
calculator.

If the calculation procedure works correctly we can now turn our attention
to displaying a ticket - in a real system this would be printed out on a printer.
The ticket should show the name of the railway and details of the passengers'
journey, as well as the fare to be paid. It will be best to display this as a
separate window.

Use the 'new form' short cut button to create a Form2 screen grid. Use the
'save project' button to save the accompanying program Unit2.pas into your
project sub-directory.

 61

From the ADDITIONAL component menu select the 'shape' component,
and place a white rectangle in the form window. Use a 'label' component to
show the name of the railway. Alongside the rectangle add an image box,
and load the bitmap file TRAIN.BMP. Complete the window with two
buttons with the captions: 'issue' and 'cancel':

Click on the dotted grid, press RETURN to bring up the Object Inspector
for Form 2, then set the Border Style property to Dialog. This will ensure
that the size of the form cannot be changed while the program is running.

Use the project manager to select the Form1 window. Double-click the
'issue ticket' button to bring up the event handler. Replace the
 'edit3.text:=... '
line with
 'form2.visible:=true '
as shown below:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ticketcost:=adult*3.20;
 ticketcost:=ticketcost + child*3.20*0.60;
 if return=true then
 ticketcost:=ticketcost*1.5;
 if firstclass=true then
 ticketcost:=ticketcost + (adult+child)*0.80;
 if (adult+child) >=4 then
 ticketcost:=ticketcost - (ticketcost*0.10);
 form2.visible:=true;
end;

 62

Go to the 'Uses' line near the top of the program and add 'Unit2' to the list:

uses
 SysUtils,WinTypes,WinProcs,Messages,Classes,Graphi cs,
Controls,Forms,Dialogs,StdCtrls,ExtCtrls, unit2 ;

Compile the project using 'Build All '. Run the program and enter some
ticket data. Click the 'issue ticket' button on Form1. The Form2 window
should now appear, ready to display the ticket. Exit from the program by
clicking the cross in the top right hand corner of the Form1 window.

Use the Project Manager to bring the Form2 grid to the front. Select the
'memo' component from the STANDARD menu:

Drag the mouse to position a memo box on the form:

A memo box is similar to an edit box component, except that it allows
multiple lines of text to be displayed and/or edited. We will use the memo to
show the ticket details.

Click on the Form2 grid and press ENTER to bring up the Object Inspector
window.

Memo

 63

Click the 'events' tab at the bottom of the Object
Inspector. This brings up a list of events which can
occur while the form is in use - the most familiar
will be:
 OnClick
meaning that the user has clicked the mouse on the
form, and
 OnKeyPress
which means that the user has pressed a key on the
keyboard while using the form. We can link event
handler procedures to any of these events.

For the present program we are going to create an
event handler for the
 On Activate
event. This procedure will be used to display ticket
details as soon as Form2 is activated and appears
on the screen.

Double-click the right hand column alongside 'On Activate' and the event
handler will appear. Add lines of program as shown below:

procedure TForm2.FormActivate(Sender: TObject);
var
 textline:string;
begin
 memo1.clear;
 if form1.adult>0 then
 begin
 textline:=inttostr(form1.adult)+ ' adults';
 memo1.lines.add(textline);
 end;
end;

The purpose of this is to display the number of adults travelling.

The line
 memo1.clear;
blanks out the memo box.

The 'if ' condition will operate only if the number of adults is greater than
zero. The program builds up a line of text by converting the integer variable
'adult' from Form1 and then adding to this the caption ' adults' . The whole
line is then added to the memo box and displayed on the screen.

 64

We must warn the computer that it will need a variable from Form1 - we do
this by adding lines of program under the 'implementation' heading:

implementation

{$R *.DFM}

uses
 unit1;

Before testing the program, double-click the 'cancel' button of Form2 to
create an event handler, and add a line of program to close the window:

procedure TForm2.Button2Click(Sender: TObject);
begin
 form2.visible:=false;
end;

We can now use the 'Build All' option to compile the project. Run the
program and test it by entering a numbers of adults. Press the 'issue ticket'
button and the correct number should be displayed. Press' cancel' to close
the window. Repeat this a few times with different numbers, then return to
the Delphi editing screen.

A similar set of lines will be needed to display the number of children. Add
this and test the program:

procedure TForm2.FormActivate(Sender: TObject);
var
 textline:string;
begin
 memo1.clear;
 if form1.adult>0 then
 begin
 textline:=inttostr(form1.adult)+ ' adults';
 memo1.lines.add(textline);
 end;
 if form1.child>0 then
 begin
 textline:=inttostr(form1.child)+ ' children';
 memo1.lines.add(textline);
 end;
end;

We now wish to show whether the ticket is first or second class, single or
return. The boolean variables 'firstclass' and 'return ' can be used to do
this.

 65

Go to the FormActivate event handler again and add the extra lines of
program:

procedure TForm2.FormActivate(Sender: TObject);
var
 textline:string;
begin
 memo1.clear;
 if form1.adult>0 then
 begin
 textline:=inttostr(form1.adult)+ ' adults';
 memo1.lines.add(textline);
 end;
 if form1.child>0 then
 begin
 textline:=inttostr(form1.child)+ ' children';
 memo1.lines.add(textline);
 end;
 if form1.firstclass=true then
 memo1.lines.add('First class ')
 else
 memo1.lines.add('Second class ');
 if form1.return=true then
 memo1.lines.add('Return')
 else
 memo1.lines.add('Single');
end;

Compile and test the program using a variety of ticket data.

The last step is to display the ticket total which was calculated earlier on
Form1. Do this by adding further lines at the end of the FormActivate
procedure:

 if form1.return=true then
 memo1.lines.add('Return')
 else
 memo1.lines.add('Single');
 memo1.lines.add('');
 textline:='TOTAL: £';
 textline:=textline +
 floattostrf(form1.ticketcost,fffixed,8,2);
 memo1.lines.add(textline);
end;

Compile and run the program to test the ticket display, then return to the
Delphi editing screen. Bring the Form2 window to the front.

 66

The display will look neater if the frame around the memo box is removed.
To do this, click on the memo box and press ENTER to bring up the Object
Inspector. Set the BorderStyle property to 'None', and the 'Ctl3D' property
to 'false' :

Display of tickets is now completed. The last stage of the program is to
keep a total of the tickets issued.

Go to the Form1 grid and add a label alongside the edit box. Also add
another button and give this the caption 'end program':

 67

Create an event handler for the 'end program' button:

procedure TForm1.Button3Click(Sender: TObject);
begin
 halt;
end;

Now double-click on the Form1 grid to set up an event handler procedure
called FormCreate. This procedure will operate only once - at the time
when the program first starts. We can use it to initialise the day total to
zero. Add the line:

procedure TForm1.FormCreate(Sender: TObject);
begin
 daytotal:=0;
end;

'Daytotal' needs to be added to the variable list:

 { Public declarations }
 adult,child:integer;
 ticketcost, daytotal :real;
 firstclass,return:boolean;
end;

Go now to Form2 and double-click the'issue' button to produce an event
handler and add the lines:

procedure TForm2.Button1Click(Sender: TObject);
begin
 form1.daytotal:=form1.daytotal+form1.ticketcost;
 form1.edit3.text:=
 floattostrf(form1.daytotal,ffFixed,8,2);
 form2.visible:=false;
end;

The purpose of this procedure is to:

• add the current ticket price to the day total
• display the day total in the edit box on Form1
• close the window for the ticket

 68

Compile and try out the finished program.

SUMMARY

In this chapter you have:
• Examined three methods used in program design: a program schematic

diagram, algorithm progressive refinement sequences and a flowchart
• used radio group components
• used Boolean variables
• written sections of program containing if..then..else conditions
• used a memo component to display lines of text
• transferred values of variables between the different Forms in the project
• produced a FormActivate event handler, which operates each time the

form is opened
• produced a FormCreate event handler, which operates only once at the

start of the program.

