FIFTEEN

Geometrical techniques for graphics

As a change from programs handling data recordaschiapter looks at two
applications which produce graphical output. Ithogrograms we will need
to use geometrical techniques:

-. - Appliuaﬁun Journey distance

A program is required which will display a map bétMeirionnydd
coast area. It should be possible to mark oututeron the map
using the mouse pointer, then the computer shoidglay the
distance travelled.

Begin the program by setting up a new directory NDAPT and saving a
Delphi project into it. Maximize the Form and drthg dotted grid to nearly
fill the screen.

A map is provided for you as the file COAST.BMP.hefe is a slight
problem because map image is larger than the c@mpateen, but we can
get around this by using&croll Box

Begin by selecting theScroll Box component from the ADDITIONAL
menu:

ScrollBox

Fun Options Toolz Help

I e e e e 2 e S

abc

\Standard) Additional {0 ata Access D ata Controls {Dislogs £ System fYB S amples [

Drag the Scroll Boxto nearly fill the dotted grid of the Form as simow
below. Press ENTER to bring up the Object Inspedteen double-click
VertScrollBar to show the properties. Set tRangeto 1400

297

Scroll Box Image Box

Picture Editor

Now place animage Box inside theScroll Box. You will find that by
operating the vertical scroll bar, you will be attedrag the bottom edge of
the Image Boxdownwards so that it is much larger than the scresght.
Keep extending thémage Boxso that the dotted outline extends nearly to
the edges of all the scrolling screen area.

Double-click in thelmage Boxand load the file COAST.BMP. Check that
the map fits the Image Box. Drag tBeroll Boxand Image Boxwider if
necessary.

298

NOTE: It is important to keep the map the same ag¢he original bitmap
image in the file, so that we can make accurattami® measurements.
Don't alter theStretch property - leave it afalse.

Compile and run the program. Check that the whalp area from Blaenau
Ffestiniog in the north to Tywyn in the south candeen. Return to the
Delphi editing screen.

Use the short-cut button to add a new blank Forhmis will be a small
window to show distances measured on the map:

Lz R] BT B

_/7
Bedduelorsdll, | v

Form?
distance: l:l km l:l miles

end program

L
Cr WFFESTINGOG
R

Use the Object Inspector to set the propertiesfom2

BorderStyle Dialog
FormStyle StayOnTop
Visible True

Add two Edit Boxes and the Labels 'distance!, km', and miles.
Complete the Form by including twButtonswith the captionsreset and
'end program'.

Bring Unit2 to the front andadd a use$ instruction under the
implementatiorheading:

implementation
{$R *.DFM}
uses

unitl,;

299

Go now toUnitl, and addUnit2 to the uses list near the top of the
program:

uses
SysUtils, WinTypes,....ExtCtrls, unit2 ;

This has linked thé&Jnits so that they are now able to exchange data when
the program is running.

Bring Form2 to the front and double-click the ‘epdbgram’ button to
produce an event handler. Add the line:

procedure TForm2.Button2Click(Sender: TObject);
begin

halt;
end;

Build and run the program. Check that frerm2 window appears on top
of the map, then press thend program' button to return to the Delphi
editing screen.

Click to select themage Boxon Forml, then press ENTER to bring up the
Object Inspector. Click theEvents tab, then double-click alongside
'‘OnMouseDowrl to produce an event handler. Add the lines:

procedure TForml.ImagelMouseDown
(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
imagel.canvas.brush.color:=clBlue;
imagel.canvas.ellipse(x-5,y-5,x+5,y+5);
end,;

The purpose of these lines is to produce a blwtect the point where the
mouse is clicked on the map. The computer redireposition asx screen

units across ang screen units down. We make use of these varidbles
draw the circle to fit within the boundaries:

S
po S

X-5 X+5

300

(8 b gyl £ ?
distance: I:I km I:I miles

reset end program |

e}
N T

Build and run the program. By clicking the mousetloe map, it should be
possible to plot a series of blue circles to mank @ route. Check that this
works, then return to the Delphi editing screen.

It would be useful, particularly with routes acraggen country, to show the
circles linked with a dotted line:

wi ety] 0 smngER g e
1 54::-"‘-"'"4-.1--*%%' ,4?{{'

ity

i
i

301

Three steps are needed to draw the first leg ofcthee:

STEP 1 _ _ STEP 2
Draw the first circl Draw the nex

and record the

i circle at the
coordinates as point , y)
(lastx. lastv) o ’
o X
STEP 3 O

Draw the dotted lin
from (lastx, lasty)

to (X, y)

The sequence can then be repeated for each adrtf@ning stages:

STEP 1 STEP 2

Recor_d the Draw the nex
coordinates of the circle at the

previous circle as point , y)
(lastx. lastv)

stepa e
Draw the dotted lin O
from (lastx, lasty)

to (X, y)

Return to the Unitl program screen and add lingeédMouseDown event
handler to do this:

procedure TForml.ImagelMouseDown
(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
imagel.canvas.brush.color:=clBlue;
if firstpoint=true then
firstpoint:=false
else

302

begin

imagel.canvas.pen.style:=psDot;
imagel.canvas.moveto(lastx,lasty);

imagel.canvas.lineto(x,y);
imagel.canvas.pen.style:=psSolid;
end;

imagel.canvas.ellipse(x-5,y-5,x+5,y+5);
lastx:=x;

lasty:=y;

end;

We are using a Boolean variablestpoint ' which istrue when the first
point on the route has just been entered - this ineidreated differently
because no dotted line is needed. We jusfistpbint ' to false ready for
the next time a point is entered:

if firstpoint=true then
firstpoint:=false

For other points along the route, a dotted lindrawn to link the current
point to the previous point. This is done with:

imagel.canvas.pen.style:=psDot;
imagel.canvas.moveto(lastx,lasty);
imagel.canvas.lineto(x,y);

At the end of the precedure, we record the posdidhe circle we have just
drawn asl@astx, lasty), ready for linking to the next one along the mut
lastx:=x;
lasty:=y;

Add the variables to th@ublic declarationssection near the top of the
program:

public
{ Public declarations }
lastx,lasty:integer;
firstpoint:boolean;

One final task is to initialisdirstpoint* to true when the program starts.
Double-click the Forml dotted grid to produce @mCreate procedure,
then add the line:

procedure TForml.FormCreate(Sender: TObject);
begin

firstpoint:=true;
end,

303

Build and run the program. When a route is entettesl points should now
be linked by a dotted line. Return to the Delghiieg screen.

It would be useful to be able to reload a cleanycofpthe map, ready for a
different route to be entered. Brikgrm2 to the front and double-click the
'reset button to create an event handler. Add the:lines

procedure TForm2.Button1Click(Sender: TObject);

begin
form1.firstpoint:=true;
forml.imagel.picture.loadfromfile('coast.omp’);
editl.text:=";

end;

Build and run the program. Enter a route, then khbat the map can be
cleared by pressing theset button. Return to the Delphi editing screen.

We can now start work on the calculation of jourdesgance. We know the

screen coordinates of each point along the roateyes can work out how
far we have moved vertically and horizontally oa thap:

(lastx, lasty)

X - lastx

The straight line distancas the crow fligscan be found using Pythagoras
theorem. We add the squares of the horizontal vamtical changes in
distance, then find the square root:

D =/(y - lasty)? + (x- lasty’
Y .

One final difficulty is that the distance will beeasured in screen units. We
will need a conversion factor to convert this t@ikietres or miles on the
map. The map scale is :

20 screen units = 1 kilometre

304

Go to the bottom oWbnitl, just above the finaéhd. command, and add a
new procedure to carry out the distance calculation

procedure TForm1l.calculate
(x,y,lastx,lasty:real);
var
d:real;
begin
scale:=1/20;
d:=sqrt(sqr(x-lastx)+sqr(y-lasty));
distance:=distance+d*scale;
form2.editl.text:=
floattostrf(distance,fffixed,8,1);
end,

The first line of the procedure:
procedure TForm1l.calculate(lastx, lasty, »/ :real);

is showing that the four coordinate valdastx, lasty, X, yneed to be input
to the procedure for use in the calculation.

The line:
d:=sqrt(sqr(x-lastx)+sqr(y-lasty));

uses the Pythagoras formula to calculate the distemnscreen units between
the current pair of points, then the line:
distance:=distance+d*scale;

converts this to kilometres and adds it to theneyrdistance so far. The
total distance is then displayed in thdit Boxon Form2
form2.editl.text := floattostrf(distance,ffixed,8,1);

Add the procedure to the list near the top of Unitl

procedure FormCreate(Sender: TObject);
procedure calculate(x,y,lastx,lasty:real);

and add the variables to the Public declarations:

{ Public declarations }
lastx,lasty:integer;
firstpoint:boolean;

distance,scale:real;

305

It is necessary to add lines to tivlouseDownr procedure to initialise the
distance to zero when the first point is entered] to call the calculate
procedure each time another point along the reuatiered. The procedure
becomes:

procedure TForml.ImagelMouseDown
(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
begin
imagel.canvas.brush.color:=cIBlue;
if firstpoint=true then
begin
distance:=0;
firstpoint:=false;
end
else
begin
imagel.canvas.pen.style:=psDot;
imagel.canvas.moveto(lastx,lasty);
imagel.canvas.lineto(x,y);
imagel.canvas.pen.style:=psSolid;
calculate(x,y,lastx,lasty);
end;
Build and run the program. Test this by enterimg ioute from Dolgellau to
Porthmadog along the main road via Trawsfynyddes®reset, then find
the distance along the alternative route via Batim@nd the toll bridge at
Penrhyndeudraeth. Return to the Delphi editingesar

It just remains to show the distance in miles ad a& kilometres. To
convert from kilometres to miles it is necessarynidtiply by 0.62137. Add
lines to the calculate procedure to do this:

procedure TForm1l.calculate(x,y,lastx,lasty:real);

var

d, miles :real;

begin

scale:=1/20;

d:=sqrt(sqr(x-lastx)+sqr(y-lasty));
distance:=distance+d*scale;
miles:=distance*0.62137;

form2.editl.text:=floattostrf(distance,fffixed,8, 1);
form2.edit2.text:=floattostrf(miles,fffixed,8,1);
end;

Build an run the finished program. Check that disés are now displayed in
miles as well as kilometres.

306

For the next project we will look at graphical tecjues for animation,
taking an example from engineering.

Now that fast computers with good graphics arelablai, engineers are
making more and more use of animation when degigmmachinery.

Computer animations can be used to check that maants will not come
into collision with each other while the machingusning, and that valves
and switches will operate at the correct momentthis is known as
'kinematic analysis.

Applieaﬁun Diesel engine animation

You are asked to produce a computer
animation of a diesel engine, showing the motiorhef piston and
valves.

The stages of the diesel engine cycle are showtherfollowing
page. The complete cycle involves two rotationthefflywheel:

1. Theinduction stroke. The inlet valve is open, and air is sucked
into the cylinder as the piston moves downwards.

2. Thecompression stroke The inlet valve closes, and the air in the
cylinder is compressed as the piston moves upwards.

3. Thepower stroke. Fuel is sprayed into the cylinder. This ignites
and the explosion drives the piston downwards.

4. Theexhaust stroke The exhaust valve opens, and the exhaust
gases are pushed out of the cylinder as the pstves upwards
again.

Begin the program by setting up a new directory S8HE and saving a
Delphi project into it. Use the Object InspectoMaximize the screen, and
drag the dotted grid to nearly fill the screen. dAaihImage Boxto the
Form. Set th&Vidth property to640and theHeight property to480.

Double-click the dotted grid of the form outside ttmage Box to produce
an OnCreat€e event handler. Add the line:

procedure TForml.FormCreate(Sender: TObject);
begin

imagel.canvas.rectangle(0,0,640,480);
end,

307

inlet walve
opeEn

air
air suclked
into the
cylinder
INDUCTION
STROKE
fuel
explosion of
the fuelfair
miture
POWER
STROKE

COMPRESSION
STROKE

both valves closed

ait being
cotnpressed

outlet walve
opEn

—>

exhaust

g burned gases

pushed out
of the cylinder

EXHAUST
STROKE

308

Compile and run the program to check that a whaekground area is
displayed, then return to the Delphi editing screen

Looking at the drawings on the previous page, padssible to divide the
engine intomovingand non-movingparts. It is simplest to begin work on
the non-moving components:

centre line
cx

20 ----

cx-45 cx-30

There is a mirror image symmetry through the ceafrthe design, so it
will be easiest to make measurements relative iso tRor example, the
inside edges of the cylinder can be drawn 30 waoitheleft andright of
the centre line. Other suitable screen coordinatesshown on the
diagram.

Go to theUnitl program screen and addcanstant to represent the
middle of the drawing area. Theage boxhas a width of 640 screen
units, so the mid line will be at 320:

{ Public declarations }
end;

var
Forml: TForm1;
const
cx=320;

309

Go to the bottom of the program and add a new piuresénginé to draw
the non-moving parts:

procedure TForml.engine;
begin
with imagel.canvas do
begin
brush.color:=clGray;
pen.color:=clGray;
rectangle(cx-30,140,cx-45,275);
rectangle(cx+30,140,cx+45,275);
rectangle(cx-100,140,cx-30,132);
rectangle(cx+100,140,cx+30,132);
moveto(cx-3,80);
lineto(cx-3,150);
moveto(cx+3,80);
lineto(cx+3,150);
rectangle(cx-3,150,cx-6,114);
rectangle(cx+3,150,cx+7,114);
rectangle(cx-100,114,cx-6,120);
rectangle(cx+100,114,cx+6,120);
rectangle(cx-30,132,cx-26,150);
rectangle(cx+30,132,cx+26,150);
end;
end,

Notice that we have used a line:

with imagel.canvas do
This avoids having to write thémagel.canvasprefix in front of each
individual graphics command.

Add the procedure to the list near the top of tteepam:

type
TForml = class(TForm)
Imagel: TImage;
procedure FormCreate(Sender: TObject);
procedure engine;

Go to theFormCreate event handler and include a line to call #reginé
procedure:

procedure TForml.FormCreate(Sender: TObject);
begin
imagel.canvas.rectangle(0,0,640,480);
engine;
end,

310

Compile and run the program to check that the gcaphre drawn
correctly. The cylinder, inlet and outlet pipesliahe fuel inlet should be
shown. Return to the Delphi editing screen.

The next step is to draw thmaoving parts- the flywheel, piston and
connecting rod assembly. This can be done in angitocedure called
‘piston’. Add this to the procedure list near the tophefprogram:

type
TForml = class(TForm)
Imagel: Timage;
procedure FormCreate(Sender: TObject);
procedure engine;
procedure piston(angle:integer);

It will be convenient to use a parametangle' to specify how far the
flywheel has rotated. We can measure the anglekwige from the
horizontal position:

180° 0°

G0°

Go to the bottom of the program and insert ph&on' procedure shown on
the next page. This draws the circle of the flygtheith a radius of 65
screen units, centred at a point 350 units dowrstheen.

We will be making a number of measurements reldtivéne centre of the
flywheel, so it is convenient to use a variablé to record the vertical screen
coordinate for the centre of the circle:

311

procedure TForml.piston(angle:integer);
var
cy:longint;
begin
cy:=350;
with imagel.canvas do
begin
brush.color:=clWhite;
pen.color:=clBlack;
ellipse(cx-65,cy-65,cx+65,cy+65);
end;
end,

Insert lines in theFormCreate' event handler to initialise thengle to zero,
then call thepiston' procedure:

procedure TForml.FormCreate(Sender: TObject);
begin

imagel.canvas.rectangle(0,0,640,480);

engine;

angle:=0;

piston(angle);
end,

Add ‘angle to thePublic declarationsection:
public
{ Public declarations }
angle:integer;

Compile and run the program to check that a cisctirawn for the flywheel,
then return to the Delphi editing screen.

We must now draw the small circle
representing the end of the
connecting rod attached to the
flywheel. Its position will depend
on the rotation angle of the
flywheel.

It will be useful to set up two new
variablesxpos andypos to give the
position of the small circle relative
to the centre of the flywheel.

312

Add lines to thepiston procedure to calculatgpos andypos and draw the
small circle:

procedure TForml.piston(angle:integer);
var
CY, Xpos,ypos :longint;
rad:real;
begin
cy:=350;
with imagel.canvas do
begin
brush.color:=clWhite;
pen.color:=clBlack;
ellipse(cx-65,cy-65,cx+65,cy+65);
rad:=angle*pi/180;
xpos:=round(35*cos(rad));
ypos:=round(35*sin(rad));
ellipse(cx+xpos-12,cy+ypos-12,
CX+Xpos+12,cy+ypos+12);
end;
end,

It is necessary to convert the angle from degreasdians before carrying
out the calculation. This is done in the line:

rad:=angle*pi/180;
Values forxposandyposare calculated using COSINE and SINE functions.

xpos:=round(35*cos(rad));
ypos:=round(35*sin(rad));

We have made the small circle follow f
a path which is 35 screen units out
from the centre of the flywheel: 35 units

The small circle is then drawn with a radius ofutits:

ellipse(cx+xpos-12,cy+ypos-12, cx+xpos+12,cyegpl2);

The extra distancegpos andypos are added to the flywheel centre position
(cx,cy) to give the centre for the small circle.

Compile and run the program to check that the sonalle is drawn, then
return to the Delphi editing screen.

313

We have been able to produce the basic shape ehtfiee, so now we can
begin work on the animation. This will require soaxtra components to be
added to the form.

Go first to the SYSTEM menu and select Thmer component:

Timer

Bun QF‘ Tool: Help
5 ;?E 2 ﬂHDLEF el =k}]

' Standard fadditional fD ata Access fData Controls fDialogs j System 4B §5amples /

As in the case of thMain Menuwhich we used in a previous chapter, the

Timer component appears as a fixed size icon. Plac€ither iconnear the
edge of thd-orm grid:

Now add a Spin Edit component at the edge of thenFd=inally, go to the
VBX component menu and select a Bi Switch:

BiSwitch
Bun Qli'tit/l; Help

||| El |)

% Standard A Additional AD ata Access AD ata Contrals ADialogs 4 Systern B A S amples

Place this below the Spin Edit as shown.

314

Click on the Timer icon and press ENTER to bringtlmg Object Inspector.

Set theproperties:
Enabled True
Interval 200

The timer will be used to measure the intervalsvbeh redrawing the engine
in each rotation position. The interval time ivegi in thousandths of a
second, so we have set a time of 200/1000 -dluse fifth of a second.

Close the Object Inspector, then double-click Tireer icon to produce an
event handler procedure. Add the lines:

procedure TForml1.TimerlTimer(Sender: TObject);
begin

engine;

angle:=angle+15;

if angle>720 then

angle:=angle-720;

piston(angle);

end;

This procedure will be activated every fifth of acend - each time the
interval set on thelimer is completed. The non-moving parts will be
redrawn with:

engine;

Fifteen degrees are then added toahgle The diesel engine cycle involves
two complete turns of the flywheel before repeating/e can record the

position in the cycle by allowing the angle to ease up to 720°, but it must
then be reset to zero:

angle:=angle+15;
if angle>720 then
angle:=angle-720;

We finally use thepiston procedure to draw the small circle in its correct
rotation position on the flywheel:

piston(angle);
Compile and run the program. The engine shouldhosvn with the small
circle rotating around the flywheel. Check alsatttheSpin Editvalue can

be changed, and that tBe Switchcan be clicked to then or off position.
Return to the Delphi editing screen.

315

e, - |25 | <0) | M- [=T]

[s]

The Bi Switch is to allow the animation to be switched on arfd @flick on
the BiSwitch component and press ENTER to bringh&oObject Inspector.
Set thepOn' property toTrue. This initialises the switch to be in the ‘on'
position when the program starts.

Close the Object Inspector then double-click th&vldich to produce an
event handler. Add the line:

procedure TForm1.BiSwitch1On(Sender: TObject);
begin

timerl.enabled:=true;
end;

This starts thélimer to run the animation whenever tBeéSwitchis in the
'on' position. We also need an event handler to sheptimer when the
BiSwitch is bff'. Go back to the Form window and click the switch
component. Press ENTER to bring up the Objectdetsp, then click the

Eventstab. Double-click alongsid®hOff' to produce an event handler,
then add the line:

procedure TForm1.BiSwitch1Off(Sender: TObject);
begin

timerl.enabled:=false;
end,

316

Compile and run the program. THSwitch should begin in theoh'
position, with the red indicator showing. Clicletewitch and the animation
should pause. Click again and it should re-stakthen you have checked
that this is working correctly, return to the DelpHiting screen.

The purpose of th8pinEdit is to control the speed of the animation. Click
on the SpinEdit and press ENTER to bring up thee@QUdpspector. Set the
properties:

MaxValue 10

MinValue 1

Hint speed control
ShowHint True
EditorEnabled False

Compile and run the program. You should find tti® number in the
SpinEditwindow can only be changed by clicking the smatbas alongside
- we have disabled the window so that values cabadiped directly from
the keyboard.

If you leave the mouse pointer stationary on thieESgit box for a couple of
seconds, a yellow hint label with the tesgieed control' will appear. Hint
labels can be added to most components by selt@ng-int and ShowHint
properties with the Object Inspector.

Return to the Delphi editing screen and doublé«cle SpinEdit to produce
an event handler. Add the line:

procedure TForm1.SpinEdit1Change(Sender: TObject);
begin

timerl.interval:=(11-spineditl.value)*20;
end;

This takes the value in ti#8pinEditbox and calculates a time interval for the
Timer. The formula has been written in such a way that larger the
number in theéSpinEditbox, the shorter the time intervals between rethgw
the pictures. This means that the simulation miili faster as th&pinEdit
value increases.

Compile and run the simulation. Check that thenatibn can be speeded up
or slowed down by changing tHgpinEdit Return to the Delphi editing
screen.

The next step is to draw the piston and conneatow in their correct

positions as the flywheel rotates. The matheméicghis will require some
careful planning!

317

len

ypos | XPOS

When the animation is running we will need to d@awnectangle to represent
the piston and a line to represent the connectimy as shown in the left
hand diagram. These must be positioned correntiyre screen.

For any rotation angle, we already know the pasibd point B where the
connecting rod is joined to the flywheel - thigyigsen by the variablegpos
and ypos relative to the centre of the flywheel at C. Tomplete the
graphics we need to know the distadcethe extra distance up the screen to
the top of the connecting rod.

We can choose the length of the connecting rod) sbfeen units would be
suitable. It is then possible to calculataising Pythagoras' formula on the
right-angled triangle ABP in the diagram:

d =+/ler? - xpod

Add lines to thepiston procedure to carry out this calculation and drhev t
rectangle and line. The procedure becomes:

procedure TForm1l.piston(angle:integer);
var

CY,Xp0s,ypos Jen,py :longint;

rad ,d :real;
begin

cy:=350;

len:=140;
with imagel.canvas do
begin

318

brush.color:=clWhite;
pen.color:=clWhite;
rectangle(cx-30,150,cx+30,320);
pen.color:=clBlack;
ellipse(cx-65,cy-65,cx+65,cy+65);
rad:=angle*pi/180;
xpos:=round(35*cos(rad));
ypos:=round(35*sin(rad));
d:=sqrt(len*len-xpos*xpos);
py:=cy+ypos-round(d);
moveto(cx+Xpos,cy+ypos);
lineto(cx,py);
rectangle(cx-30,py-20,cx+30,py+30);
ellipse(cx+xpos-12,cy+ypos-12,
CX+Xpos+12,cy+ypos+12);
end;
end,

The line:
len:=140;
sets the length of the connecting rod to be 14€escunits.

We calculate the distance d using Pythagoras' flarmu
d:=sqrt(len*len-xpos*xpos);

The next step is to draw the connecting rgay' is the vertical coordinate
for the top end of the rod:

py:=cy+ypos-round(d);

moveto(Cx+xpos,cy+ypos);

lineto(cx,py);

The piston is then drawn as a rectangle filling whéth of the cylinder, and
extending 20 units above and 30 units below theoditkde connecting rod:
rectangle(cx-30,py-20,cx+30,py+30);

NOTE:
To avoid previous positions of the piston and cating rod showing on the
diagram, instructions have been included to blamktbe previous drawing
with a white rectangle before the new piston isaira

brush.color:=clWhite;

pen.color:=clWhite;

rectangle(cx-30,150,cx+30,320);

Compile and run the program to test the animatibrthe piston and
connecting rod assembly, then return to the Daghing screen.

319

We now need to draw the inlet valve which opensaltow air into the
cylinder, and the outlet valve which opens to ke exhaust gases escape.
The valves can be drawn with a single proceduieviged we specify:

» whichside of the engine left or right

» which position for the valve -up or down
This information can be included as parameters whemrocedure is called.

Begin by adding a valve procedure to the list tkartop of the program:

type
TForm1 = class(TForm)

procedure engine;
procedure piston(angle:integer);
procedure valve(side,position:string);

Go to the bottom of the program and add the pragedu

procedure TForm1l.valve(side,position:string);
var
Cx,cy:integer;
begin
if side="left' then
cx:=303;
if position="up' then
Cy:=78,;
with imagel.canvas do
begin
brush.color:=clWhite;
pen.color:=clBlack;
moveto(cx-2,cy);
lineto(cx-2,cy+60);
lineto(cx-10,cy+72);
lineto(cx+10,cy+72);
lineto(cx+2,cy+60);
lineto(cx+2,cy);
lineto(cx-2,cy);
end;
end,

When the procedure is called, the paramesad® 'and position' will be
given as text strings, and will have the vallef$ or right', up or dowri:

procedure TForml.valve(side,position:string);

320

We then make use ofide€ and position' to set the coordinatex and
cy. These will determine where on the screen the valdeawn:

if side="left' then
cx:=303;

if position="up' then
Cy.=78;

A series of graphics commands then draw the vaivéhe required
position:
with imagel.canvas do
begin
brush.color:=clWhite;
pen.color:=clIBlack;
moveto(cx-2,cy);
lineto(cx-2,cy+60);

Go to the Forml screen and double-click Th@er component to bring up
the event handler. Add a line of program to ¢adivalve procedure with the
parameterdeéft’ and up":

procedure TForml1.TimerlTimer(Sender: TObject);
begin
engine;
angle:=angle+15;
if angle>720 then
angle:=angle-720;
piston(angle);
valve('left','up”);
end;

Compile and run the program. A valve should
shown in theléft - up’position.

The shape of the valve is correct, but we nee
make a gap in the top of the engine assembly
the valve stem to pass through. This can be c
by drawing a white rectangle.

We also need to allow for the valve being on !

'right’ side, or in thedown position. Add lines
to thevalve procedure to complete these tasks

321

procedure TForm1l.valve(side,position:string);
var
Cx,cy:integer;
begin
if side="left' then
cx:=303
else
cx:=336;
if position="up' then
cy:=78
else
cy:=88;
with imagel.canvas do
begin
brush.color:=clWhite;
pen.color:=clWhite;
rectangle(cx-2,cy-20,cx+3,cy+60);
rectangle(cx-9,cy+50,cx+10,cy+72);
pen.color:=clBlack;
moveto(cx-2,cy);
lineto(cx-2,cy+60);
lineto(cx-10,cy+72);
NOTE:
There is never a semi-colon at the end of thel#fere anelse command.
Be careful to delete the semi-colons when you keeirsg this procedure.

Add another line to th&imer event handling procedure to draw a valve in
the right - down position:

322

procedure TForml1.TimerlTimer(Sender: TObject);
begin
engine;
angle:=angle+15;
if angle>720 then
angle:=angle-720;
piston(angle);
valve(left','up”);
valve('right','down’);
end;

Comile and run the program to check that both walgee now drawn
correctly, then return to the Delphi editing scree

It just remains to animate the valves so that tbpgn and close at the
correct times during the engine cycle.

The diagrams on page 308 show the four stageseoDigsel engine cycle:
the induction, compression, power and exhaust strokes. These stages can
be related to the rotation angle of the flywheel:

INDUCTION INDUCTION
‘7
COMPRESSIO!
«—
POWEF
4 4
EXHAUST
| | | | |
[[[[I
ﬁ 180¢ 360° L 540° J_J_ 720°
v + -
> -«
o° 9Q° 450° 600° 660°
inlet valve inlet valve outlet valve outlet valve inlet valve
open closes opens closes opens

It is necessary for thimalet valve to be open during theduction stroke, and
the outlet valve must be open during tlexhaust stroke. The rotation
angles at which the valve positions change are shiothe diagram above.

323

Go to theTimer event handling procedure and change the lines vdisghay
the valves:

procedure TForml1.TimerlTimer(Sender: TObject);
begin
engine;
angle:=angle+15;
if angle>720 then
angle:=angle-720;
piston(angle);
if (angle<90) or (angle>660) then
valve('left','"down")
else
valve('left','up”);
if (angle>450) and (angle<600) then
valve('right','down’)
else
valve('right','up’);
end;

Compile and run the program. The valves should open and close at the
correct times during the engine cycle. Exit andine to the Delphi editing
screen.

It would be helpful to display captions to show thages of the engine cycle
as the animation is running. Add lines to Theer procedure to do this:

if (angle>450) and (angle<600) then
valve('right','down’)
else
valve(‘right','up”);
with imagel.canvas do
begin
pen.color:=clBlack;
case angle of
90: textout(50,50,COMPRESSION ;
270: textout(50,50,'POWER s
450: textout(50,50, EXHAUST i
630: textout(50,50,'INDUCTION s
end;
end;
end,

Compile and run the program. The caption shoulthgh as each stage of

the engine cycle begins. Check this against tagrdm on page 307, then
return to the Delphi editing screen.

324

One further improvement we can make is to showuékbeing injected into
the cylinder at the start of the power stroke:

POWER fuel

Go back to thdimer procedure and add a section of program to do this:

with imagel.canvas do
begin
pen.color:=clBlack;
case angle of
90: textout(50,50,,COMPRESSION);
270: textout(50,50,'POWER i
450: textout(50,50,EXHAUST),
630: textout(50,50,'INDUCTION);
end;
if angle=270 then
begin
brush.color:=clYellow;
pen.color:=clYellow;
rectangle(cx-2,80,cx+3,150);
pen.color:=cIBlack;
brush.color:=clWhite;
textout(306,50,'fuel’);
end;

325

if angle=360 then

begin
brush.color:=clWhite;
pen.color:=clWhite;
rectangle(306,50,360,64);
rectangle(cx-2,80,cx+3,150);

end;

end;
end,

A yellow rectangle fill is shown for the fuel whéme angle reaches 270°, and
this is blanked out with a white rectangle at 3&0®®n the injection of fuel
stops.

Compile and run the finished program.

SUMMARY

In this chapter you have:

» Used aScroll Boxto display a bitmap image larger than the screen

» Set theRangeon the Scroll Bar to match the size of the image

» Found the position of the mouse on the screen ibpg sikeMouse Down
event handler of themage Box

» Used thecanvas.pen.stylgroperty to produce a dotted line

» Calculated a distance on the screen by means baggtas' theorem

e Produced animation usingTamer component

» Displayed &hint for a component

* Made use of variables (e.©x, cy) to simplify the drawing of graphics

326

