
 191

ELEVEN

Simulation programs

An increasingly important use of computers is to carry out simulations.
These might be: to predict changes in population which could affect the
economy of a country, to predict whether a new factory is likely to be
profitable, or to predict the effect on traffic if a new road is built. Use of
computer simulations can help avoid costly mistakes being made.

In this chapter we will carry out several computer simulations. This will
allow us to practice many of the programming techniques from earlier in the
course, and will also introduce some new ideas about probability .

Supermarket checkout
simulation

A large supermarket in a city is planning
to provide a number of fast checkouts for customers who are only
purchasing a couple of items.

It is expected that a customer can be served at a fast checkout in one
minute. Customers arriving will wait in a single queue, and move to
a checkout as soon as one becomes available.

A survey is carried out to find the current number of customers with
only a couple of items to purchase; these customers would benefit
from the introduction of the new fast checkout system. It is found
that the number varies randomly between 0 and 4 customers per
minute.

When the new system is introduced, the managers do not want the
fast service queue to exceed 3 customers at any time. You are asked
to write a simulation program which could determine the least
number of checkouts which would be needed to meet this objective.

Start the program by setting up a new directory CHECKOUT and saving a
Delphi project into it. Use the Object Inspector to Maximize the form and
drag the dotted grid to nearly fill the screen.

 192

Place components on the form as shown above. At the top is a spin edit,
with a label alongside captioned 'Number of checkouts'. Set the
MaxValue of the spin edit to 6, and the MinValue to 1.

Put a List Box component onto the grid below the spin edit. The List Box is
selected from the Standard component menu.

Place two Edit Boxes to the left of the List Box. Above these add labels
with the captions 'Minutes' and 'Maximum queue so far'.

Complete the form by adding three buttons with the captions 'next minute',
'restart simulation', and 'end program'.

Double-click the 'end program' button and add the 'halt' command to the
event handler:

procedure TForm1.Button3Click(Sender: TObject);
begin
 halt;
end;

Compile and run the program to check that the spin edit operates correctly
in the range 1 - 6, and that the program returns to the Delphi editing screen
when the 'end program' button is pressed.

A flowchart will help illustrate the processing to be carried out:

 193

start

initialise the variables:
minute=0 queue=0 maxqueue=0

 stop

Generate a random number 0-4 for the
customers arriving, and add to queue

wait for a button press

add 1 to the minute number

display the minute number

customers served = number of checkouts

is
customers served >

 queue?

yes

no
customers served = queue

deduct customers served from the queue

is
this the maximum

queue so far?

yes

no

maxqueue = queue

display new maximum queue

continue?
yes

no

 194

When the simulation is running, we will need variables to record the number
of the current minute, the length of the current queue, the maximum length
of queue so far, and the number of checkouts simulated. Add these to the
Public declarations section:

 public
 { Public declarations }
 queue,maxqueue:integer;
 checkouts:integer;
 minute:integer;
 end;

At the start of the simulation we will initialise minute, queue and
maxqueue to zero. Double-click the dotted grid of the form to produce an
OnCreate procedure, then add lines of program to carry out the
initialisation:

procedure TForm1.FormCreate(Sender: TObject);
begin
 queue:=0;
 maxqueue:=0;
 minute:=0;
 randomize;
end;

The simulation will involve the use of random numbers, so it is convenient to
set the random number generator using the 'randomize' command at this
point.

Most of the processing occurs when the 'next minute' button is pressed.
Double click this button to create an event handler, then add the lines of
program below:

procedure TForm1.Button1Click(Sender: TObject);
var
 arriving,served:integer;
 textline:string;
begin
 checkouts:=spinedit1.value;
 minute:=minute+1;
 textline:='Minute '+inttostr(minute);
 listbox1.items.add(textline);
 edit1.text:=inttostr(minute);
 arriving:=random(5);
 textline:='Customers arriving: '
 +inttostr(arriving);
 listbox1.items.add(textline);
 queue:=queue+arriving;

 195

 served:=checkouts;
 if (served>queue) then
 served:=queue;
 textline:='Customers served: '
 +inttostr(served);
 listbox1.items.add(textline);
 queue:=queue-served;
 textline:='Current queue: '+inttostr(queue);
 listbox1.items.add(textline);
 if queue>maxqueue then
 begin
 maxqueue:=queue;
 edit2.text:=inttostr(maxqueue);
 end;
 listbox1.items.add('');
end;

This procedure will carry out the main loop shown on the flow chart. This
involves finding the number of customers arriving during the current minute,
the number who are served at the checkouts, and the new length of the
queue. To help us follow what is happening in the simulation, each piece of
information will be displayed in the List Box as soon as it is calculated.

The procedure begins by reading the value in the spin edit box to find the
number of checkouts for the simulation:
 checkouts:=spinedit1.value;

We add 1 to the minute number. This is displayed as a line of text in the List
Box:

 minute:=minute+1;
 textline:='Minute '+inttostr(minute);
 listbox1.items.add(textline);

The minute number is also displayed in the Edit Box on the left of the screen:
 edit1.text:=inttostr(minute);

A random number is generated to represent the number of customers
arriving, and this is displayed in the List Box:
 arriving:=random(5);
 textline:='Customers arriving: ' + inttostr(arr iving);
 listbox1.items.add(textline);

The customers who have arrived are added to the queue:
 queue:=queue+arriving;

 196

The maximum number of customers who could be served during the current
minute is equal to the number of checkouts:
 served:=checkouts;

If the maximum number of customers who could be served is greater than
the current queue length, then only the number queueing would actually be
served:

if (served>queue) then
 served:=queue;

The number of customers served is displayed in the List Box:

textline:='Customers served: ' + inttostr(served);
listbox1.items.add(textline);

The number of customers served is deducted from the queue, and the new
length of the queue is shown in the List Box:

queue:=queue-served;
textline:='Current queue: '+inttostr(queue);
listbox1.items.add(textline);

If the new length of queue is the largest so far, this is recorded as the new
maximum and displayed in the Edit Box at the left of the screen:

if queue>maxqueue then
begin
 maxqueue:=queue;
 edit2.text:=inttostr(maxqueue);
end;

Compile and run the simulation. Set the number of checkouts to be 1, then
press the 'next minute' button a couple of times. Examine the information in
the List Box and convince yourself that the program is calculating the current
queue and maximum queue correctly. Press the 'end program' button to
return to the Delphi editing screen.

The only task remaining is to create an event handler for the 'restart
simulation' button. This needs to set the variables back to zero and blank
out the List Box and Edit Boxes, ready for the next run of the simulation.
Double-click the 'restart simulation' button and add program lines to the
procedure as shown below:

 197

procedure TForm1.Button2Click(Sender: TObject);
begin
 listbox1.clear;
 edit1.clear;
 edit2.clear;
 minute:=0;
 queue:=0;
 maxqueue:=0;
end;

We are now ready to use the simulation program to solve the problem - how
many checkouts will be needed to be sure the queue never exceeds 3 people?

Run the program first with 1 checkout selected. Keep clicking the 'next
minute' button until 60 minutes have been simulated, then make a note of
the maximum queue length ...

- this result would not be acceptable to the supermarket manager!

Press the 'restart simulation' button and try again with 2 checkouts.
Continue if necessary until you find the minimum number of checkouts
needed to ensure the queue is no longer than 3 customers at any time.

 198

Electricity usage simulation

A new estate of twenty houses is to be
built, and the Electricity Board wish to estimate the amount of
electricity which would be required by the houses at different times
of the day and night. Imagine that you are a computer software
designer given the task of writing a program to simulate the
electricity usage.

From a study of similar houses on another estate, you obtain the
following data:
• The average number of electric lights in each house is 8. The

power of each light may be taken as 60 watts.
• The average number of domestic appliances in each house is 12.

The average power rating of the domestic appliances is 500 watts.

You are asked to show the total number of watts of electricity
required by the whole housing estate hourly for a 24-hour period.
You decide to divide the period into three time zones:

day - 6 a.m. to 5 p.m.
evening - 5 p.m. to 12 p.m.
night - 12 p.m. - 6 a.m.

During the day, you find that there is a 20% change that each light is
switched on, and a 20% chance that each domestic appliance is
switched on.

During the evening, there is a 60% chance that each light is switched
on, and a 40% chance that each domestic appliance is switched on.

During the night, there is a 10% chance that each light is switched
on, and a 5% chance that each domestic appliance is switched on.

Start the program by setting up a new directory ELECTRIC and saving a
Delphi project into it. Use the Object Inspector to Maximize the form and
drag the dotted grid to nearly fill the screen.

Place a List Box on the dotted grid as shown below. Add two buttons with
the captions 'Run simulation' and 'End program'.

 199

Now we can turn our attention to an algorithm for the simulation. In the
case of complex problems like this, an algorithm progressive refinement
sequence is the best approach. We can begin by summarising the objectives
of the program:

1. LOOP for hour = 0 to 23
2. calculate the amount of electricity used by the housing estate
3. END LOOP

We are just stating that an electricity usage figure is to be calculated for each
hour of the day.

Step 2 can be expanded to show how the usage will be found:

1. LOOP for hour = 0 to 23
2.1 set the electricity total to zero
2.2 LOOP for house = 1 to 20
2.3 calculate the amount of electricity used by the house and add
 this to the total
2.4 END LOOP
2.5 display the total electricity used this hour
3. END LOOP

A loop can be used to add the electricity usage for each of the twenty houses
to find the total for the hour.

The next step is to show in more detail how the usage for a particular house
will be calculated:

 200

1. LOOP for hour = 0 to 23
2.1 set the electricity total to zero
2.2 LOOP for house = 1 to 20
2.3.1 LOOP for lightbulb = 1 to 8
2.3.2 IF this lightbulb is switched on THEN
2.3.3 add 60 watts to the electricity total
2.3.4 END LOOP
2.3.5 LOOP for appliance = 1 to 12
2.3.6 IF this appliance is switched on THEN
2.3.7 add 500 watts to the electricity total
2.3.8 END LOOP
2.4 END LOOP
2.5 display the total electricity used this hour
3. END LOOP

Two more loops have been introduced to check the light bulbs and electrical
appliances in the house - if they are switched on, the appropriate number of
watts are added to the electricity total.

Let's begin constructing an event handler procedure for the 'Run simulation'
button to implement this algorithm. Double-click the button and add the
lines of program:

procedure TForm1.Button1Click(Sender: TObject);
var
 hour,house,light,appliance:integer;
 total:real;
begin
 for hour:=0 to 23 do
 begin
 total:=0;
 for house:=1 to 20 do
 begin
 for light:=1 to 8 do
 begin
 {check if this light is on}
 end;
 for appliance:=1 to 12 do
 begin
 {check if this appliance is on}
 end;
 end;
 end;
end;

 201

Notice the way the procedure has the same loop structures shown in the
algorithm design. Each loop in the procedure starts with a 'BEGIN'
command and finishes with an 'END' command.

It is easy to make an error over the number of BEGIN's or END's when
writing a complicated program. To reduce the chances of a mistake,
programmers normally indent all the lines following a BEGIN command by
about three characters, then unindent by three characters when the
corresponding END is reached. The structure is shown clearly in a block
analysis of the procedure:

 for hour:=0 to 23 do

 begin

 total:=0;

 for house:=1 to 20 do

 begin

 for light:=1 to 8 do

 begin

 {check if this light is on}

 end;

 for appliance:=1 to 12 do

 begin

 {check if this appliance is on}

 end;

 end;

 end;

Notice the use of 'comment lines' in the program:

 {check if this light is on}
 {check if this appliance is on}

You are allowed to add any notes you wish to a program listing - provided
they are enclosed in curly brackets, they will be ignored by the computer
when the program is run.

Let's now look in more detail at the loop where each light bulb is checked.
The probability that a light bulb is switched on will depend on the time zone:
 day - 20% evening - 60% night - 10%

 202

The program can generate a random number in the range 0-100 to represent
a position on a number line.

In the case of the daytime period, there is a 20% chance of any particular
light bulb being on. If the random number is found to be in the range 0-20,
we could take this to mean that the light is on, e.g.:

If , however, the random number turns out to be greater than 20, we take
this to mean the light is off, e.g.:

The position of the cut-off point on the number line will depend on the
percentage probability during the different time zones. In the evening this is
60%:

A similar method can be used to determine whether each electrical appliance
is switched on or off.

Return to the 'Run simulation' button click procedure and add lines of
program:

procedure TForm1.Button1Click(Sender: TObject);
var
 hour,house,light,appliance,n:integer;
 total:real;
 textline:string;
begin
 randomize;
 listbox1.clear;
 for hour:=0 to 23 do
 begin
 total:=0;

0% 20% 100%

0% 20% 100%

random number = 8 light ON

random number = 43 light OFF

0% 60% 100%

light ON light OFF

 203

 for house:=1 to 20 do
 begin
 for light:=1 to 8 do
 begin
 {check if this light is on}
 n:=random(100);
 if hour<6 then
 begin
 if n<10 then
 total:=total+60;
 end;
 if (hour>=6) and (hour<17) then
 begin
 if n<20 then
 total:=total+60;
 end;
 if hour>=17 then
 begin
 if n<60 then
 total:=total+60;
 end;
 end;
 for appliance:=1 to 12 do
 begin
 {check if this appliance is on}
 n:=random(100);
 if hour<6 then
 begin
 if n<5 then
 total:=total+500;
 end;
 if (hour>=6) and (hour<17) then
 begin
 if n<20 then
 total:=total+500;
 end;
 if hour>=17 then
 begin
 if n<40 then
 total:=total+500;
 end;
 end;
 end;
 total:=total/1000;
 textline:='Hour: '+inttostr(hour);
 listbox1.items.add(textline);
 textline:= 'Power usage: ' +
 floattostrf(total,ffFixed,8,2)+' kW';

 204

 listbox1.items.add(textline);
 listbox1.items.add('');
 end;
end;

The procedure begins by setting the random number genrator and blanking
out the list box:

 randomize;
 listbox1.clear;

The loops which repeat for each hour and each house begin, followed by the
loop which repeats for each light bulb :

for hour:=0 to 23 do
begin
 total:=0;
 for house:=1 to 20 do
 begin
 for light:=1 to 8 do

 begin

To check if a light is on, the computer first generates a random number:

 n:=random(100);

We check if the current hour is during the night period (12 p.m. - 6 a.m.):

 if hour<6 then
 begin

If so, we see if the random number was less than the 10% cut-off point on
the number line:

if n<10 then...

If so, then we add 60W to the electricity usage total:

 total:=total+60;

Similar groups of program lines check the percentages if the current hour is
during the day or evening period, then the whole loop is repeated for the
electrical appliances using 500W of power.

At the end of the hour loop, the total power consumption needs to be
displayed. We first divide the total by 1000 to convert watts to kilowatts:

 total:=total/1000;

Text lines are then built up to display the time and power usage:
 textline:='Hour: '+inttostr(hour);
 textline:= 'Power usage: ' + floattostrf(total,ffFixed,8,2)+' kW';

 205

Complete the program by producing an event handler for the 'End program'
button:

procedure TForm1.Button2Click(Sender: TObject);
begin
 halt;
end;

Compile and run the program. Press the 'Run simulation' button several
times, displaying a new set of results each time:

Each run of the simulation will give slightly different figures due to the
random numbers, but notice that there is always a large increase in power
consumption at 6 o'clock in the morning, and again at 5 o'clock in the
evening.

When results are output in text form it can be difficult to appreciate the
pattern of the data, so a graph of results is often better. We can do this now
using the techniques for drawing histograms which we learned in chapter 9:

Return to the Delphi editing screen. Click on the List Box and press the
DELETE key to remove it from the form. Place an image box on the form
as shown below, and drag the buttons to a position above the image box.
Use the Object Inspector to set the Width of the image box to 640, and the
Height to 480.

 206

Modify the first part of the 'Run simulation' procedure so that it draws and
labels the graph axes:

procedure TForm1.Button1Click(Sender: TObject);
var
 hour,house,light,appliance,n,x,y :integer;
 total:real;
 textline:string;
begin
 randomize;
 image1.canvas.brush.color:=clWhite;
 image1.canvas.rectangle(0,0,640,480);
 image1.canvas.moveto(100,50);
 image1.canvas.lineto(100,400);
 image1.canvas.lineto(580,400);
 for y:=0 to 7 do
 begin
 image1.canvas.moveto(100,400-y*50);
 image1.canvas.lineto(90,400-y*50);
 textline:=inttostr(y*10);
 image1.canvas.textout(70,393-y*50,textline);
 end;
 image1.canvas.textout(20,200,'kW');

 207

 for x:=0 to 23 do
 begin
 image1.canvas.moveto(100+x*20,400);
 image1.canvas.lineto(100+x*20,410);
 textline:=inttostr(x);
 image1.canvas.textout(102+x*20,412,textline);
 end;
 image1.canvas.textout(320,440,'time: hours');
 for hour:=0 to 23 do
 begin
 total:=0;
 for house:=1 to 20 do
 begin

Remove all lines from the start and end of the procedure which contain
listbox1 commands - the list box has now been removed from the program
so these would cause errors when the program runs.

Compile and run the program to check that the axes are drawn and labelled
correctly when the 'Run simulation' button is pressed, then return to the
Delphi editing screen.

We now need to plot the columns on the histogram as the simulation runs.

 208

Add lines at the end of the procedure which will use the 'total' value to draw
the columns of the histogram:

 end;
 end;
 total:=total/1000;
 image1.canvas.brush.color:=clRed;
 image1.canvas.rectangle(100+hour*20,
 400-round(total*5),121+hour*20,401);
 end;
end;

The graph has been scaled so that each hour is represented by 20 screen
units horizontally, and each kilowatt is represented by 5 screen units
vertically:

Compile and run the completed program. Each time the 'Run simulation'
button is pressed, a new set of results is displayed. Notice the underlying
pattern of electricity usage through the 24 hour period, despite the random
fluctuations.

100 580

50

400

480

0 640

70

 0

350 screen units = 70 kW

480 screen units = 24 hours

5 screen units = 1 kW

20 screen units = 1 hour

