Chapter 3: Railway Tickets 17

3 Railway Tickets

The next program combines the techniques we have used so far, to produce a ticket
program for a narrow gauge railway.

The fare structure for the railway is:

e Single second class adult fare: £6.40

e Return fare is one and a half times the single fare

e All child fares are 60% of the equivalent adult fare

e Each adult or child passenger may pay a £2.00 surcharge to travel First Class for the
whole of their single or return journey

e Groups of four or more passengers booking together receive a 20% discount on their

total fare

We will begin by starting a new project called ‘railway’

P Recent

4 |nstalled
4 Templates

4 Visual Basic
I Store Apps

| .MNET Framewaork 4.5

v| Sort by: |Defau|t

-c#
B] Blank App (Universal Apps)
FY

Visual C#

(E

Windows Forms Application

A project for creatin
Visual C#) Windows Forms us

C#

Search Installed Tem

Type: Visual C#

9 [|

Windows Desktop WPF Application Visual C#
b Web i
) . c
b Office/SharePoint E Console Application Visual C#
Cloud
. . c#
LightSwitch F_‘I Hub App (Universal Apps) Visual C#
Reporting
. . (%]
Silverlight B | ASP.NET Web Application Visual C#
Test e
WCF a] ')
‘Qi! Class Library Visual C#
Workflow B
R cost .
Class Library (Portable) Visual C#
b Visual C++ b ! o
b Visual F# [Fe*
WebView A indows Phone; Visual C#
SOL Server @.IJ pp (W)
b JavaScript c# . i o)
@ Silverlight Application Visual C#
Python
- ot
I Online B Silverlight Class Library Visual C#
Click here to go onling and find templates.
Mames railway)
Location: |D:\programs!,
Solution name: railway
J

Create directory for
[[] Add to source cont

18

Programming with C#.NET

Create two text boxes for entering the numbers of adult and child passengers. Give the

boxes the names txtAdult and txtChild. Add labels for the screen display:

rormt.cs oesignl* = < |

Adults

Form1

Railway ticket booking

Children

[= =]

We will now set up buttons for choosing a single or return ticket.

Begin by selecting the GroupBox component in the Containers section of the Toolbox, and

drag the mouse to draw a frame. Change the Text property of the GroupBox to ‘Journey
type’ to create a heading:

- 1 | [

FE >

Binr BN EMERFEE

L3

1

Earch Toolbox

e

ComboBox
DateTimePicker
Label

LinkLabel
ListBox

ListView
MaskedTextBox
MonthCalendar
Notifylcon
MumericUpDown
PictureBox
ProgressBar
RadioButton
RichTextBox
TextBox
ToolTip
TreeWiew

WebBrowser

4 Containers

Pointer
FlowLayoutPanel
GroupBox

Panel

SplitContainer

-

L Form1

Railway ticket booking

Adults |:| Children

Joumey type

[]

Chapter 3: Railway Tickets 19

Choose the RadioButton component from the Toolbox and drag the mouse to place two
buttons inside the group box.

Change the Text properties of the RadioButtons to ‘Single’ and ‘Return’.
Give the RadioButtons the names rbtnSingle and rbtnReturn.

Set the Checked property of the ‘Single’ button to True:

- W O-F@oaE| s F
sl Form1 EI@ Search Solution Explorer (Ctrl+;)

a1 Solution 'railway’ (1 project)
Pl railway
b A Properties
P =B References
¥ App.config
Adults Children 4 Forml.cs
b T Forml.Designer.cs
T Forml.resx
I *z Forml
P o Program.cs

Railway ticket booking

Joumey type

SN LLYSILIES Team Explorer Class View

() Retum

Backgroundlmagelayout Tile

CheckAlign Middleleft
(Checked True)
Cursor Default
FlatAppearance
FlatStyle Standard
Font Microsoft Sans

Run the program to test the radio group. If this works correctly, the ‘Single’ button should
initially be selected. It should only be possible to select one of the options:

Railway ticket booking

Adults Children

Joumey type

() Single

(@) Fetum

Stop the program by clicking the red cross at the top right-hand corner of the form.

20 Programming with C#.NET

Return to the design screen and add another GroupBox and two RadioButtons to allow the
user to select a ‘First class’ or ‘Second class’ ticket.

Give the RadioButtons the names rbtnFirst and rbtnSecond. Set the Checked property of
the ‘Second’ RadioButton to True.

Joumey type Class

(® Single) First

() Retum (®) Second
lzsue Ticket

Complete the form by adding a Button for issuing the ticket, and a TextBox for displaying
the ticket price. Give these components the names btnTicket and txtTicketprice.

We can now work on the calculations. Right-click on the form, then select ‘View Code’. Add
two integer variables ‘adult’ and ‘child’ at the start of Form1.

Right-click on the form, then select ‘View Designer’. Double-click the ‘Issue Ticket’ button
to create a button_click method. Add lines of code to obtain the numbers of adults and
children from the TextBox inputs.

We do not want the program to crash if the user makes an entry error, so we will use a
TRY..CATCH structure to provide a warning message:

public partial class Forml : Form

{

(int adult, child;)

public Forml()

{
InitializeComponent();
}
private void btnTicket_ Click(object sender, EventArgs e)
{ \
try
{
adult = Convert.ToIntl6(txtAdult.Text);
child = Convert.ToIntl6(txtChild.Text);
}
catch
{
MessageBox.Show("Incorrect entry");
}

Chapter 3: Railway Tickets 21

Run the program to test the error trapping. This should give an ‘incorrect entry’ message if
letters are typed instead of a number, but unfortunately the warning also appears if we
leave a box blank — for example, if no children are travelling:

o Form1

Railway ticket booking

Adults 3 Children

Joumey type Class

(®) Single () First

(") Retum ® Second Incorrect entry

Return to the design screen. Select each of the input TextBoxes in turn, and set the Text
property to ‘0.

B SOOI T Uy T ETO]CCT
. . o 4 railway
Railway ticket booking b J Properties
I =B References
¥ App.config
Adults 0 Children 4 Forml.cs
b 1 Form1.Designer.cs
Y Forml.resk
%z Form1
I c* Program.cs
Joumey type Class
®) Single O First
= - - Solution Explorer
() Retum (® Second Properties
tictChild Systerm.Windows.Forms.TextBox
SRR AR,
lssue Ticket Lines String[] Array
RightToLeft Mo
ScrollBars None
TextAlign Left

Run the program again and check that no error message appears when booking for one
adult travelling on their own. Close the program window and go to the program code.

We can now start work on calculating the ticket cost. Set up a variable ‘ticketcost’ which
will store this as a decimal number to represent pounds and pence.

22 Programming with C#.NET

The fare structure is quite complex, so it is best to split the calculation into a series of
stages, and test the program after each stage. We can begin by working out the cost of the
adult and child tickets, assuming a single fare of £6.40, with children paying 60% of the adult

cost. The total can then be displayed in the TextBox:

public partial class Forml : Form

{
int adult, child;
(double ticketcost;)

public Forml()

¢ InitializeComponent();
}
private void btnTicket_Click(object sender, EventArgs e)
{
try
{

adult = Convert.ToIntl6(txtAdult.Text);
child = Convert.ToIntl6(txtChild.Text);

ticketcost adult * 6.40;
ticketcost = ticketcost + (child * 6.40 * 0.60);

txtTicketprice.Text = Convert.ToString(ticketcost);

Run the program and check the calculations for different numbers of adults and children

(remembering that all tickets are currently second class single).

Railway ticket booking

Adults 2 Children 0
Joumey type Class
(® Single () First
() Retum (@ Second
lesue Ticket
128

The calculations should be correct, but we have a problem with the display format. In some

cases, the pence are not shown correctly with two decimal places.

Chapter 3: Railway Tickets 23

Go back to the program listing, and alter the code to ensure that the output is always
displayed to two decimal places:

try
{
adult = Convert.ToIntl6(txtAdult.Text);
child = Convert.ToIntl6(txtChild.Text);
ticketcost = adult * 6.40;
ticketcost = ticketcost + (child * 6.40 * 0.60);

string s=ticketcost.ToString("f2");
txtTicketprice.Text = s;

We can now consider the other ticket options. Begin by setting up two Boolean (true/false)
variables called ‘single’ and ‘first’:

public partial class Forml : Form

{
int adult, child;
double ticketcost;

bool single;
bool first;

public Forml()
{

}

InitializeComponent();

We will use the ‘single’ variable to record the type of journey:

e single = true means ‘single ticket wanted’
e single = false means ‘return ticket wanted’

An easy way to set the value of ‘single’ is just to see whether the ‘Single’ RadioButton has
been selected. If not, then the user must require a ‘Return’ ticket and we add the extra cost
as one and a half times the single fare. Add lines to the program as shown:

try
{
adult = Convert.ToIntl6(txtAdult.Text);
child = Convert.ToIntl6(txtChild.Text);
ticketcost = adult * 6.40;
ticketcost = ticketcost + (child * 6.40 * 0.60);

single = rbtnSingle.Checked;
if (single == false)
{

}

ticketcost = ticketcost * 1.5;

string s=ticketcost.ToString("f2");
txtTicketprice.Text = s;

24 Programming with C#.NET

Run the program and test that second class Single and Return fares are now calculated

correctly:

Railway ticket booking

Adults 2 Children 3
Joumey type Class

() Single i) First

(@) Retumn (® Second

36.43

We will use a similar method to add the First Class charge of £2.00 per person:

try

adult = Convert.ToIntl6(txtAdult.Text);

child = Convert.ToIntl6(txtChild.Text);
ticketcost = adult * 6.40;

ticketcost = ticketcost + (child * 6.40 * 0.60);
single = rbtnSingle.Checked;

if (single == false)
{

}

ticketcost = ticketcost * 1.5;

first = rbtnFirst.Checked;

if (first == true)
{

}

ticketcost = ticketcost + (adult + child) * 2.00;

string s=ticketcost.ToString("f2");
txtTicketprice.Text = s;

Run the program and check that First Class fares are now calculated correctly.

The final step to complete the ticket calculation is to apply the 20% discount offered to
groups of four or more passengers:

Chapter 3: Railway Tickets 25

{
}

first = rbtnFirst.Checked;
if (first ==

ticketcost = ticketcost + (adult + child) * 2.00;

true)

{
}

if ((adult + child) >= 4)

ticketcost = ticketcost - (ticketcost * 0.2);

string s=ticketcost.ToString("f2");
txtTicketprice.Text = s;

Run the program and check that group discounts are being calculated correctly.

We will now move on to produce the ticket for the customer ...

Begin by creating another form. To do this, click-right on the C# ‘railway’ icon in the

hen select ‘Add / New Item’:

Solution Explorer
@ o-2uda®
Search Solution Explorer (Ctrl+;)

5 solution railway (1 proi

4

m Solution ‘railway’ (1 project)

&4 Build
Rebuild
Clean

View

P M Properties
P =W References
'ﬂ App.config
P Forml.cs
b M Form1.Designer.cs
T Formtresx
b %2 Form1
P ©* Program.cs

Analyze
& publish...

Scope to This

MNew Solution Explorer View

-
(O New ltem..) Ctrl+Shift+A Add
*3 Existing Item.. Shift+Alt+A # Manage NuGet Packages..

Select ‘Windows Form’, and

give this the name ‘Ticket.cs’:

Data
General
P Web
Windows Forms
WPF
Reporting
SQL Server
Workflow
Graphics

I Online

.-O Interface Visual C# ltems
Windows Form Visual G ltems
..I.j User Control Visual C# ltems
,I;I | Component Class Visual G ltems

L]
User Control (WPF) Visual C# ltems

- |

Ay

About Box Visual C# ltems

Click here to go online and find templates.

Name: (Ticket.cs

26 Programming with C#.NET

It will be best to use a white background. Click on the form, then go to BackColor in the
Properties window. Click to open the colour selection palettes, and choose white from the
Custom palette:

2 Tk ===

Search Solution Explorer (Ctrl+;)

m Solution railway’ (1 project)
4 [railway
b Properties
P w® References
!D App.config
4 Form1.cs
>N Form1.Designer.cs
™ Form1.resx
B *z Form1
P € Program.cs
Ticket.cs

Properties

Ticket System.Windows.Forms.Form

EE-N a2
= arance
[BackColor ISR B

Backgroundimage | Custom Web System
'n] Backgroundimagel g

Cursor '@ I_I_I_I_I_I_
Font I— I_ I_ I_ . .

Add a Label 'Ticket'. Place a Picture Box in the right hand half of the ticket area, and insert a
suitable picture:

3 Ticket (= [= =]

Ticket

*| PictureBox Tasks

Choose Image...

Select Resource ? X

1

Resource context Size Mode: | Normal

Dock in Parent Container

@ Local resource:

Import... | | Clear |

(O Project resource file:

Properties\Resources.resx

Import...

The final component we need to produce the ticket is a ListBox, in which we can display the
ticket details.

Chapter 3: Railway Tickets 27

Select the ListBox component in the Toolbox and drag the mouse on the form to produce a
box outline. Go to the Properties window, and set the Font property to display a larger
point size.

Toolbox Ticket.cs [Design]* +® X el yReg (PESTs])

Search Toolbox P
B All Windows Forms - a2 Ticket == %)
4 Common Controls
k Pointer
Button
CheckBox
= CheckedListBox o .
listBox1

Ticket

& ComboBox

B2 DateTimePicker
A Label

A Linklabel

EE ListBox

: ListView

(). MaskedTextBox
B MonthCalendar
bk Notifylcon

B NumericUpDown
P PictureBox

& ProgressBar [=; u|
® RadioButton
23 RichTextBox
Bo TextBox

= ToolTip

= TreeView

The Ticket form needs to open when the ‘Issue Ticket’ button is clicked on Form1. To do
this, go to the end of the button_click method on Form1, and add the lines of code:

if ((adult + child) >= 4)
{

}
string s=ticketcost.ToString("f2");
txtTicketprice.Text = s;

ticketcost = ticketcost - (ticketcost * 0.2);

Ticket frmticket = new Ticket();
frmticket.ShowDialog();

}
catch
{
MessageBox.Show("Incorrect entry");
}

We are using ‘Ticket’ to refer to the CLASS we have designed for displaying tickets, whilst
‘frmticket’ is one particular OBJECT belonging to this class which we will create when the
program is running.

28 Programming with C#.NET

Run the program, enter ticket details, and then click the ‘Issue Ticket’ button. If all goes
well, the ticket form should open:

L]

Railway ticket booking

Adults 2 Children 0
o Ticket . [} X
Joumey type Class Ticket
@® Singe O Fst
O Retum @ Second
Issue Ticket

In order to produce the ticket, we need to carry over information from Form1 about the
number of passengers, type of ticket wanted, and the calculated ticket cost. The best way
to do this is to set up a method on the ‘Ticket’ form which brings in this data as parameters.
Set up the method ‘displayTicket’ as shown:

public partial class Ticket : Form

{
public Ticket()
{
InitializeComponent();
}
public void displayTicket(int adults, int children, bool single,
bool first, double ticketcost)
{
}
}

We can now return to Form1 and add a line of code which will call this method, using the
values we wish to transfer as parameters:

string s=ticketcost.ToString("f2");
txtTicketprice.Text = s;
Ticket frmticket = new Ticket();

(:frmticket.displayTicket(adult, child, single, first, ticketcost);)

frmticket.ShowDialog();

Chapter 3: Railway Tickets

Go back now to the ‘Ticket’ program code. The data we need should now be available,

using the parameter names we have specified in the header of the ‘displayTicket’ method.

We can begin by displaying the number of adults. ListBoxes, like TextBoxes, can only display

string data, so it is necessary to convert the number into string format.

public void displayTicket(int adults, int children, bool single,
bool first, double ticketcost)

{
(%tring s = Convert.ToString(adults);]

listBox1l.Items.Add(s + " adults");

}

Run the program. Issue a ticket, and check that the correct number of adults is displayed on

the ticket:

Ticket

2 adults

Return to the ‘displayTicket’ method and add lines of code to display the other ticket
details. Notice that we have used an IF condition to only display the number of children
when there are actually children included in the ticket:

public void displayTicket(int adults, int children, bool single,
bool first, double ticketcost)
{
string s = Convert.ToString(adults);
listBox1.Items.Add(s + " adults");

s = Convert.ToString(children);
if (children>9)
listBox1.Items.Add(s + " children");
if (single==true)
listBox1.Items.Add("Single");
else
listBox1.Items.Add("Return");
if (first == true)
listBox1l.Items.Add("First class");
else
listBox1l.Items.Add("Second class");

30 Programming with CH#.NET

Test the program for the different possibilities of: adults plus children or adults only, single
or return, first or second class:

Ticket
4 adults
3 children Ticket
Return
First class
4 adults
Single
Second class

Add code to display discount for groups, and to show the overall ticket price:

if (first == true)
listBox1l.Items.Add("First class");
else
listBox1.Items.Add("Second class");

if ((adults+children)>=4)
listBox1.Items.Add("20% group discount");

listBox1.Items.Add("");

s = ticketcost.ToString("f2");

listBox1.Items.Add("£"+s);

Test the finished program. One slight improvement you might try making yourself, is to
display the singular word ‘adult’ or ‘child’ when only one person is travelling, rather than
the plural:

Ticket
. wll
3 adults
4 children Ticket
Return
Second class
20% group discount
1 adults

1 children
Return
Second class

£41.47

£15.36

