
 Chapter 3: Railway Tickets 17

3 Railway Tickets

The next program combines the techniques we have used so far, to produce a ticket

program for a narrow gauge railway.

The fare structure for the railway is:

 Single second class adult fare: £6.40

 Return fare is one and a half times the single fare

 All child fares are 60% of the equivalent adult fare

 Each adult or child passenger may pay a £2.00 surcharge to travel First Class for the

whole of their single or return journey

 Groups of four or more passengers booking together receive a 20% discount on their

total fare

We will begin by starting a new project called ‘railway’

18 Programming with C#.NET

Create two text boxes for entering the numbers of adult and child passengers. Give the

boxes the names txtAdult and txtChild. Add labels for the screen display:

We will now set up buttons for choosing a single or return ticket.

Begin by selecting the GroupBox component in the Containers section of the Toolbox, and

drag the mouse to draw a frame. Change the Text property of the GroupBox to ‘Journey

type’ to create a heading:

 Chapter 3: Railway Tickets 19

Choose the RadioButton component from the Toolbox and drag the mouse to place two

buttons inside the group box.

Change the Text properties of the RadioButtons to ‘Single’ and ‘Return’.

Give the RadioButtons the names rbtnSingle and rbtnReturn.

Set the Checked property of the ‘Single’ button to True:

Run the program to test the radio group. If this works correctly, the ‘Single’ button should

initially be selected. It should only be possible to select one of the options:

Stop the program by clicking the red cross at the top right-hand corner of the form.

20 Programming with C#.NET

Return to the design screen and add another GroupBox and two RadioButtons to allow the

user to select a ‘First class’ or ‘Second class’ ticket.

Give the RadioButtons the names rbtnFirst and rbtnSecond. Set the Checked property of

the ‘Second’ RadioButton to True.

Complete the form by adding a Button for issuing the ticket, and a TextBox for displaying

the ticket price. Give these components the names btnTicket and txtTicketprice.

We can now work on the calculations. Right-click on the form, then select ‘View Code’. Add

two integer variables ‘adult’ and ‘child’ at the start of Form1.

Right-click on the form, then select ‘View Designer’. Double-click the ‘Issue Ticket’ button

to create a button_click method. Add lines of code to obtain the numbers of adults and

children from the TextBox inputs.

We do not want the program to crash if the user makes an entry error, so we will use a

TRY..CATCH structure to provide a warning message:

 public partial class Form1 : Form
 {
 int adult, child;

 public Form1()
 {
 InitializeComponent();
 }

 private void btnTicket_ Click(object sender, EventArgs e)
 {
 try
 {
 adult = Convert.ToInt16(txtAdult.Text);
 child = Convert.ToInt16(txtChild.Text);
 }
 catch
 {
 MessageBox.Show("Incorrect entry");
 }
 }

 Chapter 3: Railway Tickets 21

Run the program to test the error trapping. This should give an ‘incorrect entry’ message if

letters are typed instead of a number, but unfortunately the warning also appears if we

leave a box blank – for example, if no children are travelling:

We can easily solve this problem…

Return to the design screen. Select each of the input TextBoxes in turn, and set the Text

property to ‘0’.

Run the program again and check that no error message appears when booking for one

adult travelling on their own. Close the program window and go to the program code.

We can now start work on calculating the ticket cost. Set up a variable ‘ticketcost’ which

will store this as a decimal number to represent pounds and pence.

22 Programming with C#.NET

The fare structure is quite complex, so it is best to split the calculation into a series of

stages, and test the program after each stage. We can begin by working out the cost of the

adult and child tickets, assuming a single fare of £6.40, with children paying 60% of the adult

cost. The total can then be displayed in the TextBox:

 public partial class Form1 : Form
 {
 int adult, child;
 double ticketcost;

 public Form1()
 {
 InitializeComponent();
 }

 private void btnTicket_Click(object sender, EventArgs e)
 {
 try
 {
 adult = Convert.ToInt16(txtAdult.Text);
 child = Convert.ToInt16(txtChild.Text);
 ticketcost = adult * 6.40;
 ticketcost = ticketcost + (child * 6.40 * 0.60);

 txtTicketprice.Text = Convert.ToString(ticketcost);
 }

Run the program and check the calculations for different numbers of adults and children

(remembering that all tickets are currently second class single).

The calculations should be correct, but we have a problem with the display format. In some

cases, the pence are not shown correctly with two decimal places.

 Chapter 3: Railway Tickets 23

Go back to the program listing, and alter the code to ensure that the output is always

displayed to two decimal places:

 try

 {

 adult = Convert.ToInt16(txtAdult.Text);
 child = Convert.ToInt16(txtChild.Text);
 ticketcost = adult * 6.40;
 ticketcost = ticketcost + (child * 6.40 * 0.60);

 string s=ticketcost.ToString("f2");
 txtTicketprice.Text = s;

 }

We can now consider the other ticket options. Begin by setting up two Boolean (true/false)

variables called ‘single’ and ‘first’:

 public partial class Form1 : Form
 {
 int adult, child;
 double ticketcost;

 bool single;
 bool first;

 public Form1()
 {
 InitializeComponent();
 }

We will use the ‘single’ variable to record the type of journey:

 single = true means ‘single ticket wanted’

 single = false means ‘return ticket wanted’

An easy way to set the value of ‘single’ is just to see whether the ‘Single’ RadioButton has

been selected. If not, then the user must require a ‘Return’ ticket and we add the extra cost

as one and a half times the single fare. Add lines to the program as shown:

 try
 {
 adult = Convert.ToInt16(txtAdult.Text);
 child = Convert.ToInt16(txtChild.Text);
 ticketcost = adult * 6.40;
 ticketcost = ticketcost + (child * 6.40 * 0.60);

 single = rbtnSingle.Checked;
 if (single == false)
 {
 ticketcost = ticketcost * 1.5;
 }

 string s=ticketcost.ToString("f2");
 txtTicketprice.Text = s;
 }

24 Programming with C#.NET

Run the program and test that second class Single and Return fares are now calculated

correctly:

We will use a similar method to add the First Class charge of £2.00 per person:

 try
 {
 adult = Convert.ToInt16(txtAdult.Text);
 child = Convert.ToInt16(txtChild.Text);
 ticketcost = adult * 6.40;
 ticketcost = ticketcost + (child * 6.40 * 0.60);
 single = rbtnSingle.Checked;

 if (single == false)
 {
 ticketcost = ticketcost * 1.5;
 }

 first = rbtnFirst.Checked;

 if (first == true)
 {
 ticketcost = ticketcost + (adult + child) * 2.00;
 }

 string s=ticketcost.ToString("f2");
 txtTicketprice.Text = s;
 }

Run the program and check that First Class fares are now calculated correctly.

The final step to complete the ticket calculation is to apply the 20% discount offered to

groups of four or more passengers:

 Chapter 3: Railway Tickets 25

 first = rbtnFirst.Checked;

 if (first == true)
 {
 ticketcost = ticketcost + (adult + child) * 2.00;
 }

 if ((adult + child) >= 4)
 {
 ticketcost = ticketcost - (ticketcost * 0.2);
 }

 string s=ticketcost.ToString("f2");
 txtTicketprice.Text = s;

Run the program and check that group discounts are being calculated correctly.

We will now move on to produce the ticket for the customer …

Begin by creating another form. To do this, click-right on the C# ‘railway’ icon in the

Solution Explorer window, then select ‘Add / New Item’:

Select ‘Windows Form’, and give this the name ‘Ticket.cs’:

Drag the form to the size of the design window, and use a Label component to add a ‘Ticket’

heading.

26 Programming with C#.NET

It will be best to use a white background. Click on the form, then go to BackColor in the

Properties window. Click to open the colour selection palettes, and choose white from the

Custom palette:

Add a Label 'Ticket'. Place a Picture Box in the right hand half of the ticket area, and insert a

suitable picture:

The final component we need to produce the ticket is a ListBox, in which we can display the

ticket details.

 Chapter 3: Railway Tickets 27

Select the ListBox component in the Toolbox and drag the mouse on the form to produce a

box outline. Go to the Properties window, and set the Font property to display a larger

point size.

The Ticket form needs to open when the ‘Issue Ticket’ button is clicked on Form1. To do

this, go to the end of the button_click method on Form1, and add the lines of code:

 if ((adult + child) >= 4)
 {
 ticketcost = ticketcost - (ticketcost * 0.2);
 }
 string s=ticketcost.ToString("f2");
 txtTicketprice.Text = s;

 Ticket frmticket = new Ticket();
 frmticket.ShowDialog();
 }
 catch
 {
 MessageBox.Show("Incorrect entry");
 }

We are using ‘Ticket’ to refer to the CLASS we have designed for displaying tickets, whilst

‘frmticket’ is one particular OBJECT belonging to this class which we will create when the

program is running.

28 Programming with C#.NET

Run the program, enter ticket details, and then click the ‘Issue Ticket’ button. If all goes

well, the ticket form should open:

In order to produce the ticket, we need to carry over information from Form1 about the

number of passengers, type of ticket wanted, and the calculated ticket cost. The best way

to do this is to set up a method on the ‘Ticket’ form which brings in this data as parameters.

Set up the method ‘displayTicket’ as shown:

 public partial class Ticket : Form
 {
 public Ticket()
 {
 InitializeComponent();
 }

 public void displayTicket(int adults, int children, bool single,
 bool first, double ticketcost)
 {

 }
 }

We can now return to Form1 and add a line of code which will call this method, using the

values we wish to transfer as parameters:

 string s=ticketcost.ToString("f2");
 txtTicketprice.Text = s;
 Ticket frmticket = new Ticket();

 frmticket.displayTicket(adult, child, single, first, ticketcost);

 frmticket.ShowDialog();
 }

 Chapter 3: Railway Tickets 29

Go back now to the ‘Ticket’ program code. The data we need should now be available,

using the parameter names we have specified in the header of the ‘displayTicket’ method.

We can begin by displaying the number of adults. ListBoxes, like TextBoxes, can only display

string data, so it is necessary to convert the number into string format.

 public void displayTicket(int adults, int children, bool single,
 bool first, double ticketcost)
 {
 string s = Convert.ToString(adults);
 listBox1.Items.Add(s + " adults");
 }

Run the program. Issue a ticket, and check that the correct number of adults is displayed on

the ticket:

Return to the ‘displayTicket’ method and add lines of code to display the other ticket

details. Notice that we have used an IF condition to only display the number of children

when there are actually children included in the ticket:

 public void displayTicket(int adults, int children, bool single,
 bool first, double ticketcost)
 {
 string s = Convert.ToString(adults);
 listBox1.Items.Add(s + " adults");

 s = Convert.ToString(children);
 if (children>0)
 listBox1.Items.Add(s + " children");
 if (single==true)
 listBox1.Items.Add("Single");
 else
 listBox1.Items.Add("Return");
 if (first == true)
 listBox1.Items.Add("First class");
 else
 listBox1.Items.Add("Second class");
 }

30 Programming with C#.NET

Test the program for the different possibilities of: adults plus children or adults only, single

or return, first or second class:

Add code to display discount for groups, and to show the overall ticket price:

 if (first == true)
 listBox1.Items.Add("First class");
 else
 listBox1.Items.Add("Second class");

 if ((adults+children)>=4)
 listBox1.Items.Add("20% group discount");
 listBox1.Items.Add("");
 s = ticketcost.ToString("f2");
 listBox1.Items.Add("£"+s);
 }
 }

Test the finished program. One slight improvement you might try making yourself, is to

display the singular word ‘adult’ or ‘child’ when only one person is travelling, rather than

the plural:

